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1 SCENE PERCEPTION PREDICTION

1.1 Comparing SP Graphs with HOI Graphs
While our definition of SP graphs are inspired by the notion of HOI
graphs, we discuss two major differences in this section.
First, in the HOI detection task, an image shows how people

physically interact with objects from a third-person view. In an HOI
graph, depending on the number of detected objects, there could
be multiple human nodes and object nodes; and edges could be
densely generated such that the whole graph is a complete graph.
In contrast, in an SP graph, a panoramic image corresponds to the
first-person view of an observer who does not explicitly show up in
the image. Instead of modeling physical human-object contacts, we
model the observer’s visual interaction with objects by perceiving
his surroundings, which fits with our notion of scene perception.
Therefore, edges are only generated for human-object pairs.

Second, HOI graphs relies on visual features (e.g., visual repre-
sentations of human gestures and object shapes) extracted from
RGB images using convolutional neural networks to classify the
types of interactive activities between people and objects. While
visual features could capture low-level visual details, in SP graphs,
we propose to use high-level semantic features, which allow our
method to work in more general cases. In our implementation, we
use the category features and depth features for general and robust
representations of SP graphs.

1.2 Flattening SP Graphs into Sequences
We discuss the equivalence of an SP graph 𝐺 and its flattened se-
quence 𝑠 (𝐺). First, to transform𝐺 into 𝑠 (𝐺), while the human node
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and edges are ignored, features of all other nodes corresponding to
the detected objects are reserved. In other words, 𝑠 (𝐺) can be simply
regarded as an array of object nodes sorted by the features. Second,
transforming 𝑠 (𝐺) back to 𝐺 only requires adding the human node
back and building edges between every human-object node pairs.
Since 𝐺 and 𝑠 (𝐺) are equivalent, the process of flattening 𝐺 does
not lose any information.

1.3 Pilot Study for Rational Choice Assumption
We ran a a two-alternative forced choice (2AFC) pilot study to
briefly validate the rational choice assumption that the positions
in the scenes where the authors of the Gibson Environment [Xia
et al. 2018] chose to capture equirectangular panoramic images are
desirable. In our study, participants visited a pair of virtual positions
in an immersive manner through VR devices, and they were asked
to choose the position with a more desirable view based on the
surrounding objects (e.g., furniture, decoration). In each comparison
pair, one position is randomly selected from the assumed optimal
examples, and another position is randomly sampled from the same
scene of the picked optimal example. We tried to avoid cases where
the views of the random samples and the optimal examples are too
similar to each other (i.e., where the random samples are close to
the optimal examples). In order to guarantee their differences, we
discard random samples whose similarity value to the optimal set is
higher than 0.8 (calculated by the graph kernel 𝐾 (·)).
We recruited 30 participants in the pilot study. Each participant

was asked to make 20 comparisons. The null hypothesis 𝐻0 was
that users perceive no significant differences in the desirability of
panoramic views at optimal examples and random samples. The
alternative hypothesis 𝐻1 was that users did perceive significant
differences. According to the results, 440 out of all the 600 selections
are the optimal examples.
We first adopted the Chi-square nonparametric analysis tech-

nique. The obtained optimal/random frequencies were compared
to an expected 300/300 result to ascertain whether this difference
is significant. The analysis suggests that participants favor optimal
examples with a 99% a confidence level (𝑝 = 2.93e−30). Second,
we adopted a Bayesian analysis to determine whether the number
of participants who selected the assumed optimal examples was
what would be expected by chance, or if there was a preference
pattern. We assumed that the participant had a probability 𝑃 of
picking the assumed optima, and used a binomial distribution to
model the results. We computed the odds 𝑂10 on 𝐻1 over 𝐻0, and
the results (𝑂10 = 1.45e28) showed "very strong evidence" favoring
𝐻1 according to [Rouder et al. 2009].
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2 TELEPORT GRAPH OPTIMIZATION

2.1 Balancing Action Acceptance Probability
In practice, the teleport graphs are fairly sparse. The selected po-
sitions in a teleport graph only account for a small portion of all
candidate positions in a scene and the ratio |V |

|P | is usually low. As a

result, in most cases the term |P−V |
|V∗ | is large, thus𝐴a is close to 1 and

𝐴b is close to 0. To address this issue, we regularize the number of
positions to stay close to an expected range. Intuitively, the number
of positions |V| in a teleport graph should increase with the area of
free space, which can be approximated by the number of candidate
positions |P | as the candidate positions are densely sampled. Recall
that as we extract data from the Gibson Environment [Xia et al.
2018], we fit a polynomial function _( |P|) to estimate the number
of selected positions based on the number of candidate positions
|P |. Therefore we can balance 𝐴a and 𝐴b by penalizing the solution
when the number of positions exceeds _( |P|), which is encoded as
the regularization cost in Section 5.2 of our main paper.

3 RESULTS

3.1 Scene Perception Score Prediction
To complement results in the main paper, we shows the visualization
of SP score maps in Figure 3 obtained using our SP predictor (GAT)
and the baseline (CNN) for Scene 1 to Scene 4, which are used in the
main paper experiments. By comparing the score maps produced
by the two methods, we observe that the SP predictor yields results
similar to the ground truth. In particular, in some local areas (e.g.,
Scene 1’s bedroom, Scene 2’s bathroom, Scene 3’s master bedroom,
Scene 4’s corridor), the score variation patterns are well predicted. In
comparison, the score maps by the baseline appear overly smoothed;
sharp SP score variations in some local areas are not well captured.

We also show quantitative results of SP score prediction for Scene
5 to Scene 16 in the 16-scene dataset in Table 1, which further validate
that our GAT-based SP predictor is more reliable for handling diverse
cases.

3.2 Additional Teleport Graph Synthesis for Indoor Scenes
We demonstrate additional teleport graph syntheses for Scene 5 to
Scene 16. Eight of the results in Figure 4 and Figure 5 are in synthetic
scenes, and the other four in Figure 6 are in 3D reconstructed scenes
extracted from the Matterport3D dataset [Chang et al. 2017]. The
results indicate that our approach can be widely adopted in various
virtual indoor environments of different sizes, structures and styles.

3.3 Teleport Graphs with and without Scene Perception
When synthesizing teleport graphs, the SP score cost serves as a soft
constraint that encourages graphs to include positions with higher
SP scores, which indicate higher visual desirability. According to
our experiment observations, while the connectivity constraint is
usually more easily satisfied, an intuitive consequence of omitting
the SP score consideration is that it stimulates teleport graphs to
cover a larger area of the virtual environment and avoid redundant
coverage, no matter how the views look like.

We make two comparisons in Figure 7 to qualitatively show how
views at selected positions are influenced without the SP score

Table 1. Quantitative results of SP score prediction for our SP predictor
(GAT) and the baseline (CNN) in the experiment indoor scenes. For AE
𝑝-value of Ours/Baseline, bold indicate significant differences with 95%
confidence.

Scene Pos.# RMSE AE Variance AE
Ours Baseline Ours Baseline 𝑝-value

5 2,279 0.062 0.099 0.0050 0.0038 2.39e-61
6 2,651 0.074 0.149 0.0102 0.0163 9.31e-26
7 3,409 0.064 0.117 0.0079 0.0096 2.31e-102
8 2,226 0.062 0.086 0.0020 0.0029 1.86e-21
9 2,619 0.049 0.072 0.0017 0.0021 5.04e-11
10 2,715 0.057 0.111 0.0039 0.0185 5.75e-43
11 3,431 0.057 0.106 0.0022 0.0050 6.71e-55
12 2,223 0.068 0.096 0.0014 0.0019 1.61e-2
13 9,985 0.056 0.085 0.0024 0.0032 1.30e-9
14 20,595 0.078 0.108 0.0029 0.0051 2.60e-207
15 4,670 0.057 0.107 0.0031 0.0051 7.24e-24
16 13,735 0.072 0.118 0.0030 0.0065 3.13e-196

consideration. Similar to results in Figure 7 in the main paper, for
comparison and illustration purposes, we use results synthesized
with all costs as the initialization and omit the SP score cost to
synthesize new results. In each comparison group, we select a node
with a small move but a large SP score variation to show the change
of its first-person view. In Scene 1, from the all costs result to the
no SP score cost result, the selected node moves away from the
wall above to cover a larger area. While connectivity to the top-left
room is still maintained, the view at the selected node is severely
occluded, and we have difficulty recognizing the table from this
view. In another case in Scene 2, for the no SP score cost result,
one node is set free from the rightmost room to cover another area
inside the scene. In order to maintain connectivity, the selected node
is moved to an extreme position very close to the wall. Similarly,
without considering visual information, the view at the selected
node is severely occluded.
The results suggest that a tradeoff between scene perception

and other constraints is necessary, and the SP cost consideration is
indispensable for synthesizing visually desirable teleport graphs.

3.4 Other Environments
Canyon. We apply our approach to synthesize a teleport graph

for another outdoor environment, a canyon, as shown in Figure 8.
Akin to the natural park example in the main paper, we define
a teleport position’s SP score based on whether a flag is visible
from this position within 100m. The synthesized teleport graph
shows that most (88.89%) of the teleport positions have a visible flag
nearby even though the user’s visibility could be occluded by rocks
often. Meanwhile the teleport graph maintains connectivity in this
complex environment.

Outlet. We also applied our approach for a multi-floor outlet
scene. Unlike the outdoor environments, we modified the definition
of SP score cost in this example to generate a teleport graph that
fits with a user’s shopping preferences in visiting a virtual outlet
in VR. Akin to some real-world shopping experiences, we assume
that the user is only interested in certain categories of shops. The
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Fig. 1. Boxplots of the number of teleport counts versus exploration ratio for
all conditions. The dots, triangles and orange lines indicate outliers, means,
and medians, respectively. The whiskers indicate the min/max values. The
box indicate the first/third quartiles.

Fig. 2. Distribution of participants’ anchor choice ratios.

SP score here is defined based on the proximity and visibility of the
nearest store of the user’s interested category.
If a teleport position is near the front door (i.e. within 5𝑚) of a

store of the user’s interested category, the position has an SP score
of 1.0. If a teleport position allows the user to see a store of the
user’s interested category within a certain distance (i.e. within 50𝑚),
the position has an SP score of 0.5. Otherwise, the position has an
SP score of 0.0.
Figure 9 shows a teleport graph synthesized with this SP score

definition. We set shoes stores as the stores of interest. As this scene
consists of multiple floors, we fix nodes at the ends of the stairs at
each floor to keep the whole graph connected. According to the
result, with the SP score cost, nodes are more densely sampled near
the shoe stores. In contrast, without using the SP score cost, the
nodes of the synthesized teleport graph are more evenly distributed
in the free space.

4 USER STUDY

4.1 Navigation Results
We demonstrate more details of the navigation results by showing
boxplots for all conditions in Figure 1. While the results support our
conclusion that ours generally reduces the teleport counts, the fact
that the results of ours show less deviation overall also suggests that
participants using ours had more stable teleport operations when
navigating in virtual environments.

4.2 Anchor Choice Ratio
Since participants using ours also had the freedom to manually
choose destinations other than the anchor positions of the graph, we
cannot draw conclusions about ours from records where the anchor
choice ratios are low. We examine the distribution of participants’
anchor choice ratios and present the results in Figure 2. According
to the results, participants show generally high anchor choice ratios
when using ours.
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Fig. 3. A comparison of SP score maps produced by our SP predictor (GAT) and the baseline (CNN) for Scene 1 to Scene 4.
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Fig. 4. Teleport graph syntheses and predicted SP score maps for Scene 5 to Scene 8 (synthetic scenes).
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Fig. 5. Teleport graph syntheses and predicted SP score maps for Scene 9 to Scene 12 (synthetic scenes).
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Fig. 6. Teleport graph syntheses and predicted SP score maps for Scene 13 to Scene 16 (3D scans from the Matterport3D dataset [Chang et al. 2017]).
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Fig. 7. Qualitative comparisons between synthesized graphs with and without the SP score consideration in Scene1 and Scene 2. First-person views are shown
at selected nodes.
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Fig. 8. Teleport graphs synthesized for a canyon. Gray nodes denote positions where no flag is visible. For the graph synthesized with all costs, 88.89% of the
positions have a visible flag in their proximity. For the graph synthesized without the SP score cost, only 62.86% of the positions have a visible flag.
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Fig. 9. Teleport graphs synthesized for an outlet scene consisting of four floors. The SP score is defined based on the promxity and visibility of shoe stores.
Red nodes refer to positions within 5m from a shoe store. Green nodes refer to positions where a shoe store is visible within 50m. Cyan nodes refer to the
remaining positions. With the SP score cost, more nodes in front of a shoe store are sampled to form the teleport graph.
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