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Fig. 1. Users navigate a virtual environment efficaciously via a teleport graph synthesized by our approach. Left: A teleport graph synthesized for an apartment
scene. Glowing cyan anchors represent suggested teleport positions with desirable views. Right: The first-person view at a teleport position.

We present a novel approach for synthesizing scene-aware virtual reality
teleport graphs, which facilitate navigation in indoor virtual environments
by suggesting desirable teleport positions. Our approach analyzes panoramic
views at candidate teleport positions by extracting scene perception graphs,
which encode scene perception relationships between the observer and the
surrounding objects, and predict how desirable the views at these positions
are. We train a graph convolutional model to predict the scene perception
scores of different teleport positions. Based on such predictions, we apply an
optimization approach to sample a set of desirable teleport positions while
considering other navigation properties such as coverage and connectivity to
synthesize a teleport graph. Using teleport graphs, users can navigate virtual
environments efficaciously. We demonstrate our approach for synthesizing
teleport graphs for common indoor scenes. By conducting a user study, we
validate the efficacy and desirability of navigating virtual environments via
the synthesized teleport graphs. We also extend our approach to cope with
different constraints, user preferences, and practical scenarios.
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1 INTRODUCTION
Locomotion is a fundamental task in virtual reality (VR). With the
recent popularity of consumer-grade VR devices and the increasing
availability of high fidelity virtual environments produced by visual
computing technologies, it is crucial to develop effective locomotion
techniques to help users navigate immersive virtual environments.
Among various VR locomotion techniques, real walking [Usoh

et al. 1999] is the most natural one. However, real walking is con-
strained by the size of the physical space available. While walking-
based approaches allow continuous movements, teleportation is a
common VR locomotion technique [Al Zayer et al. 2018; Boletsis
2017] which supports discrete movements without requiring the
user to move physically, hence lifting the play area restrictions. To
teleport, the user first selects a target position and his or her virtual
viewpoint will be instantly transferred there [Bozgeyikli et al. 2016].

While teleportation allows navigation in infinite virtual spaces, it
could be challenging for users to choose ideal target positions in a
virtual environment. There are two major challenges: (1) Users may
find it hard to evaluate target positions before they arrive there. The
surroundings at the target positions might deviate from what they
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imagine before teleporting. (2) Users select target teleport positions
using a ray cast from their perspective view. It could be difficult
to select a target position precisely, especially if the position is far
away. Due to these reasons, when navigating a new area, users
might need to adjust their positions by teleporting several times.
In this paper, we present a scene perception (SP)-based VR tele-

portation approach to tackle such challenges. We propose teleport
graphs whose nodes denote positions in a virtual scene and edges
denote visibility among each other. Our approach synthesizes tele-
port graphs through an optimization by searching over the space of
graphs. Our work facilitates users to visually perceive the scenes
through teleportation. The goal is to enable users to efficaciously
navigate a scene in virtual reality by teleporting through visually-
desirable positions. By requiring pairwise visibility for connecting
a pair of nodes, our approach ensures graph connectivity thus users
could traverse the whole scene continuously via a teleport graph.
Figure 1 depicts a synthesized teleport graph. Note that teleport
graphs are compatible with conventional teleportation techniques.
We encode several considerations as cost terms of the optimiza-

tion, one of which is based on a learned data-driven model of po-
sition desirability. More specifically, we trained a graph attention
network (GAT) [Veličković et al. 2017], which outperformed a con-
volutional neural network (CNN) in our experiment, to predict
position desirability in indoor apartment scenes, based on scene
perception relationships modeled in scene perception (SP) graphs.
The SP graphs are extracted from RGB-D panoramic images which
present observers’ first-person views, and can be regarded as high-
level abstractions of the spatial relationships between observers and
the nearby objects. Meanwhile, other cost terms incorporate proper-
ties, including coverage, connectivity, etc. that are exclusive to the
VR teleportation task. While our approach can synthesize teleport
graphs for a variety of indoor apartment scenes automatically, we
also show possible extensions for handling other scene types.

Our approach is useful for compelling use case scenarios. For ex-
ample, it can serve as a tool for laying out teleport graphs for large
procedurally generated virtual environments or user-generated VR
maps. Our approach may also help people with motor impairments
(e.g., people who have difficulty with fine-grained controller manip-
ulations) to navigate VR scenes.
The major contributions of our work include the following:

• We propose scene perception graphs to encode scene percep-
tion relationships from panoramic images; and apply a GAT
model to learn and evaluate these relationships.

• We model the set of teleport positions into teleport graphs to
handle important VR teleportation considerations; and em-
ploy an optimization approach to synthesize teleport graphs.

• We evaluate the efficacy and desirability of the teleport graphs
synthesized by our approach for supporting VR navigation
through a user study.

2 RELATED WORK

2.1 Virtual Reality Locomotion
Compared to other VR locomotion techniques (e.g. joystick-based
locomotion [Boletsis 2017]), real walking is more natural and im-
mersive, resulting in higher subjective presence [Slater et al. 1995;

Usoh et al. 1999]. However, a major restriction of real walking is the
limited size of a physical VR play area. One promising solution is
redirected walking [Dong et al. 2019; Razzaque et al. 2001; Sun et al.
2018], which creates a distorted mapping from the physical space to
the virtual environment, enabling users to navigate a large virtual
world. Another solution is walking-in-place, where a user stays at
a fixed physical position while walking in the virtual world. Such
an approach is usually realized with the help of hardware such as a
Virtuix Omni treadmill. Besides walking-based techniques, world-in-
miniature [Stoakley et al. 1995] or mini-map [Mahalil et al. 2019] is
also a famous VR locomotion technique. Refer to recent surveys by
Boletsis [2017] and Zayer et al. [2018] for a comprehensive review
of VR locomotion techniques.

2.2 Teleportation
Teleportation is a widely used VR locomotion technique [Boletsis
2017]. Previous works have compared teleportation with natural
walking [Sayyad et al. 2020] and joystick-based locomotion [But-
tussi and Chittaro 2019; Langbehn et al. 2018]. The most straight-
forward version of teleportation is "point & teleport" [Bozgeyikli
et al. 2016], which translates the virtual viewpoint to the destination
instantly. To address the problem of disorientation in teleporta-
tion, some variations were introduced, like gradually moving the
viewpoint [Bhandari et al. 2018] or allowing users to specify target
orientations [Bozgeyikli et al. 2016; Funk et al. 2019]. While those
teleportation strategies require users to manually specify destina-
tions, such specifications could be inefficacious due to the lack of
prior knowledge about the scene and how desirable the target po-
sitions are. [Habgood et al. 2018] studied the differences between
free teleport and a node-based locomotion technique. Our approach
complements VR teleportation by analyzing a virtual scene and
suggesting desirable positions, and is compatible with real-world
3D scans, manually created virtual environments, and procedurally
generated virtual scenes [Feng et al. 2016; Qi et al. 2018b].

2.3 Scene Perception Graph
Previous works studied the problem of improving VR locomotion
experiences by evaluating viewpoint quality and scene visibility [Fre-
itag et al. 2016, 2017, 2018]. We address this problem using a general
and flexible representation of viewpoint information. In recent work,
human-object interaction (HOI) structures are modeled using HOI
graphs [Li et al. 2019; Qi et al. 2018a; Ulutan et al. 2020]. Based on ob-
ject detection results, human nodes and objects nodes are extracted,
and their relations are encoded in edges. Graph representations
are general, informative, and flexible, as they comprise a varying
number of nodes and edges. Inspired by the notion of HOI graphs
and the concept of scene perception [Geisler 2008; Rensink 2000]
taken as the "visual perception of an environment as viewed by
an observer at any given time", we propose scene perception (SP)
graphs to model an observer’s perception of nearby objects together
with their relative spatial relationships.

Based on the SP graph representation, we further come up with
its flatted sequence representation for comparing different graphs.
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Fig. 2. Given an input virtual scene, our approach goes through two stages to synthesize a teleport graph. First, in the scene perception (SP) prediction stage
(Section 4), our approach samples a set of candidate positions within the free space. SP graphs are extracted from the panoramic views and passed to the
prediction model to compute an SP score map. Second, in the teleport graph optimization stage (Section 5), our approach synthesizes a desirable teleport
graph through an optimization by considering SP scores, coverage, connectivity, etc.

Such a representation refers to a statistical feature akin to the bag-
of-words model widely applied in computer vision as a vector of oc-
currence counts of a visual feature vocabulary [Fei-Fei 2007; Zhang
et al. 2010]. In forming the flatted sequence of an SP graph, however,
we do not build a vocabulary and do not fix the sequence length,
since we would like a flexible representation to encode what objects
and how many of them are detected. Thus, the sequence length
corresponds to the specific SP graph it represents.

3 OVERVIEW
We devise an approach that automatically analyzes an input virtual
indoor scene and suggests teleport positions through which users
can navigate the scene efficaciously. Figure 2 shows an overview of
our approach comprising two stages.

Scene Perception Score Prediction. Our approach first samples can-
didate positions in the free space. It then synthesizes a panoramic
image at each position for SP score prediction. A panoramic im-
age shows the observer’s first-person view, thus conveys the scene
perception relationships among the observer and objects in the
surrounding environment. Our model extracts SP graphs from the
panoramic RGB-D images and passes them to a predictor to generate
their corresponding SP scores. These scores indicate the desirability
or human preferences of the positions. Hence an SP score map as
depicted in Figure 2 can be computed for the virtual scene. Section 4
discusses the technical details of this step.

As it could be challenging to define rules to explicitly determine
what positions in virtual scenes are desirable by humans, we use
a GAT [Veličković et al. 2017] model to learn and predict human
preferences of viewing positions. We use human-marked positions
in virtual scenes from the Gibson Environment [Xia et al. 2018]
for training, following a rational choice assumption [Hedström and
Stern 2008] that such human-marked positions are optimal.

Teleport Graph Optimization. Based on the predicted SP score
map, we not only select desirable positions with high SP scores,
but also consider the interrelation among the selected positions

to enable efficacious navigation of the virtual scene by a user. For
example, the connectivity among nodes is considered to ensure a
user could traverse a whole scene continuously. To this end, our
approach synthesizes a teleport graph whose nodes encode the se-
lected positions and whose edges encode visibility between nodes.
We formulate our approach as an optimization problem to search
for a teleport graph considering properties such as SP score, cov-
erage, connectivity, etc. which are encoded as cost functions. As
sampling the teleport graph throughout the optimization process
might involve dimensionality-changing actions, such as addition of
nodes, we employ the reversible-jump Markov chain Monte Carlo
(RJMCMC) [Green 1995] sampling strategy to maintain the detailed
balance condition. The optimization synthesizes a desirable teleport
graph for the scene. Section 5 discusses the optimization process.

4 SCENE PERCEPTION PREDICTION
Given a virtual indoor scene as input, the first step of our approach
is to evaluate candidate positions in the free space in terms of their
desirability represented as SP scores. In this section, we describe
the details of SP score prediction. We extract SP graphs based on
object detection results on panoramic RGB-D images rendered at
the candidate positions. We use panoramic images because they
correspond to a user’s comprehensive first-person views at the
candidate positions in virtual reality.

In our work, we define the desirability of a candidate position as
the maximum similarity between the SP graph of this candidate and
that of an example in an optima set, following the rational choice
assumption [Hedström and Stern 2008]. We define a graph kernel
to measure this similarity and further use it to annotate a collected
SP dataset for training a GAT-based SP predictor.

Note that we do not use visual saliency [Itti et al. 1998] to evalu-
ate scene desirability because a view with high saliency does not
necessarily appear more desirable. For example, most people would
avoid standing very close to a picture, even though this would likely
put salient content in their fields of view. Instead, we learn scene
perception encoding human preferences in a data-driven manner.
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Fig. 3. An example process of aligning the flattened sequences of two SP graphs𝐺𝑎 and𝐺𝑏 . The SP graphs are extracted from the panoramic images and
transformed into the flattened sequences 𝑆 (𝐺𝑎) and 𝑆 (𝐺𝑏 ) . To align the sequences, fake object nodes (denoted by ∗) are added to each sequence so that their
object categories and numbers match. The 𝑑𝑎𝑖 and 𝑑𝑏𝑖 are the depth features of the objects in𝐺𝑎 and𝐺𝑏 . The fake nodes are assigned with a depth feature
𝑑 = 1.0, which means the objects are infinitely far away.

4.1 Scene Perception Graph Extraction
Akin to the human-object interaction (HOI) graph generation pro-
cess, a powerful and reliable object detector is essential for SP graph
extraction. With object detection, our method could be applied in
general virtual environments without semantic annotations. As
we focus on indoor apartment scenes, we train a detection model
on Indoor-360 dataset [Chou et al. 2020]. Specifically, we use the
Faster R-CNN [Ren et al. 2015] + FPN [Lin et al. 2017] model with a
ResNet101 [He et al. 2016] backbone. Following the settings in [Chou
et al. 2020], we replace the conventional Convolutional Neural Net-
works (CNNs) by SphereNets [Coors et al. 2018] for learning the
invariance of distortions in equirectangular images.

Wemodel SP graphs from a first-person perspective: In an equirect-
angular panoramic image, the observer, who stands at the center of
the position, perceives the surroundings with a 360° view. Therefore,
there are two types of nodes in an SP graph: (1) A human node,
which is independent of the object detector and is implicitly initial-
ized; (2) Object nodes, which rely on the object detection results.
Every detected object results in an object node in the graph, and
an undirected edge between this object node and the human node.
Among all the 37 object detection label categories in the Indoor-360
dataset, the label “person” is the 0th label and is assigned only to
the human node. Any object detected as “person” in the panoramic
images is removed. Figure 3 shows examples SP graphs extracted
from bedroom panoramic images.
To evaluate the similarity between different views in a robust

manner, our SP graphs use high-level semantic features rather than
low-level visual features. As a result, two scenes with consistent
furniture layouts but different object textures will be determined as
highly similar. The SP graphs use two types of node features: (1)Cat-
egory feature, which corresponds to semantic labels of detected
objects by the object detector; (2) Depth feature, which represents
the spatial relationship between the observer and objects nearby.

In our implementation, we extract a depth feature by averaging
the depth values within the region of a detected object’s bounding
box. We normalize the depth feature to [0, 1], where 0 denotes zero
distance and 1 denotes being infinitely far away.
Formally, an SP graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the

set of nodes and 𝐸 is the set of edges. 𝑣𝑖 ∈ 𝑉 denotes a node, where
𝑉 = {𝑣0, 𝑣1, . . . , 𝑣𝑛} and 𝑛 is the number of detected objects. 𝑣0 is the
human node and all the other nodes are object nodes. 𝑒𝑖, 𝑗 ∈ 𝐸 de-
notes an edge pointing from 𝑣𝑖 to 𝑣 𝑗 , where 𝐸 = {𝑒0,1, 𝑒0,2, . . . , 𝑒0,𝑛}.
The set of node features 𝐻 = {−→ℎ0,

−→
ℎ1, . . . ,

−→
ℎ𝑛}, where

−→
ℎ𝑖 = (𝑐𝑖 , 𝑑𝑖 )

is a tuple of category feature 𝑐𝑖 and depth feature 𝑑𝑖 . Specifically,−→
ℎ0 = (0, 0), which corresponds to the human node.

4.2 Scene Perception Score
Determining the desirability of a candidate position based on its
panoramic view is challenging as this is a subjective problem and
is hard to model by deterministic rules and criteria. We tackle this
problem in a data-driven manner. We collect a set of human-marked
positions as optimal examples used as references (described in Sec-
tion 4.3). We propose a graph kernel to measure the similarity (in the
range of [0, 1]) between two SP graphs. The SP score of a candidate
position is defined as the maximum similarity between its SP graph
and the SP graph of an optimal example. Figure 4 shows an example
of applying our graph kernel to measure the similarity scores of
three example panoramic images with respect to a reference.

Graph kernels [Vishwanathan et al. 2010], like the random walk
graph kernel [Gärtner et al. 2003] and the Weisfeiler-Leman graph
kernel [Shervashidze et al. 2011], are commonly used for measuring
the similarity between a pair of graphs. In our problem, when com-
paring SP graphs, we consider the fact that the SP graphs have a
fixed structure in general. Therefore, we define a graph kernel 𝐾 (·)
exclusively for comparing SP graphs. Before defining 𝐾 (·), we in-
troduce a function 𝑠 (·) that transforms an SP graph into a flattened
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Fig. 4. Three example images and their similarities to the reference com-
puted by our graph kernel. In each image, the top five object detection
results are shown with bounding boxes. Image 1 is the most similar to the
reference in terms of the object detection results and depth features, hence
the highest similarity score. Image 3 has the lowest similarity score.

sequence as 𝑠 (𝐺) = (𝑣𝑠1, 𝑣𝑠2, . . . , 𝑣𝑠𝑛). The human node 𝑣0 is ignored
in a sequence 𝑠 (𝐺) as human nodes have a uniform representation
in all SP graphs according to our definition. Nodes are sorted first
by the category feature and then by the depth feature. Note that
𝐺 and 𝑠 (𝐺) are equivalent; flattening 𝐺 does not lose information.
Refer to the supplementary material for further discussion.
When comparing two sequences 𝑠 (𝐺𝑎) and 𝑠 (𝐺𝑏 ) of two SP

graphs𝐺𝑎 and𝐺𝑏 , we further transform the sequences into aligned
sequences 𝑠 ′(𝐺𝑎) and 𝑠 ′(𝐺𝑏 ), which have the same number of nodes
for each category to enable computing the cosine similarity. The
transformation is performed as follows: for each category of node
present in 𝑠 (𝐺𝑎) or 𝑠 (𝐺𝑏 ), suppose, without loss of generality, 𝑠 (𝐺𝑎)
has fewer nodes of that category. Then we append 𝑠 (𝐺𝑎) with “fake”
nodes of that category with a depth value of 1.0 (meaning infinitely
far away) so that 𝑠 ′(𝐺𝑎) and 𝑠 ′(𝐺𝑏 ) have the same number of nodes
of that category. Figure 3 shows an example. 𝑠 (𝐺𝑎) has no “TV” node
and 𝑠 (𝐺𝑏 ) has one “TV” node. So a “TV” node with a depth value
of 1.0 is added to 𝑠 (𝐺𝑎) in forming 𝑠 ′(𝐺𝑎). Based on the aligned
sequences 𝑠 ′(𝐺𝑎) and 𝑠 ′(𝐺𝑏 ), we define the graph kernel as:

𝐾 (𝐺𝑎,𝐺𝑏 ) =
𝑠 ′(𝐺𝑎) · 𝑠 ′(𝐺𝑏 )
|𝑠 ′(𝐺𝑎) | |𝑠 ′(𝐺𝑏 ) |

. (1)

4.3 Dataset
We extracted a set of 5, 000 panoramic images at human-marked
positions as optimal examples from the Gibson Environment [Xia
et al. 2018], which comprises a large-scale database of spaces of
572 buildings consisting of 1, 447 floors covering a total area of
211, 000m2. Each space comes with a set of RGB panoramic images
(e.g., one captured image per 5-10m2), with global camera poses and
reconstructed 3D meshes. Similar to [Zhu et al. 2016] which follows
the rational choice assumption [Hedström and Stern 2008], we as-
sume that positions in the scenes where the authors of the Gibson
Database chose to capture equirectangular panoramic images are
desirable. We conducted a pilot study to validate this assumption
whose details are included in the supplementary material.

In principle, running the graph kernel directly to produce SP
scores for novel panoramic views is feasible but computationally
inefficient. Therefore, we propose to learn and predict scene per-
ception in a data-driven manner. We constructed an SP dataset,

which consists of 20, 000 synthesized panoramic images (together
with their SP graphs) at randomly sampled positions in the Gibson
Environment, for training an SP predictor. The ground truth SP
score label of a sample is set as its similarity to the closest optimal
example according to 𝐾 (·). We used 70% of the data for training,
15% for validation, and 15% for testing.

While the SP dataset is for training and testing the SP predictor,
which is a key component in our pipeline, we also built another
16-scene dataset for testing the whole teleport graph synthesis ap-
proach. This dataset consists of 16 virtual indoor scenes: 12 of the
scenes are synthestic, while the other 4 are reconstructed 3D scans
extracted from the Matterport3D dataset [Chang et al. 2017] which
help validate the generalization ability of our approach. Each scene
has complete 3D meshes and textures. The ground truth SP score of
a sampled position in free spaces is also set as its similarity to the
closest optimal example.

4.4 Prediction via Graph Convolution
To handle the input represented as SP graphs, we train a graph
convolutional network (GCN) for SP score prediction. Compared
to previous convolutional neural networks, GCNs do not require
the input data to be organized in an Euclidean domain [Zhang et al.
2019]. To incorporate attention mechanisms [Bahdanau et al. 2014;
Hu 2019], we apply a graph attention network (GATs) [Veličković
et al. 2017] in practice, allowing the model to focus on the most
relevant parts of the input rather than putting attention evenly on
every component, which fits with our problem setting where the
user would pay attention to objects in the surrounding.

Graph Attentional Layer. We briefly illustrate how a single GAT
layer works. In the GAT, the self-attention operation is performed
on the nodes to compute attention coefficients:

𝛽𝑖 𝑗 = 𝑎(W
−→
ℎ𝑖 ,W

−→
ℎ 𝑗 ) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (−→a𝑇 (W−→

ℎ𝑖 ∥ W
−→
ℎ 𝑗 )) . (2)

In this step,W ∈ R𝐹 ′×𝐹 is a learnable weight matrix that performs
a shared linear transformation on the input node feature, where 𝐹
is the number of node features and 𝐹 ′ is the size of node feature
embedding. The coefficient 𝛽𝑖 𝑗 denotes the importance of 𝑧 𝑗 to 𝑧𝑖 ,
where there exists an edge 𝑒𝑖 𝑗 connecting node 𝑣𝑖 to its neighbor
node 𝑣 𝑗 . GAT employs an attentional mechanism 𝑎(·), which is
parameterized by a weight vector −→a ∈ R2𝐹 ′

and activated by a
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 function. Here | | denotes concatenation. Next, these
coefficients are normalized using a softmax function:

𝛼𝑖 𝑗 =
𝑒𝛽𝑖 𝑗∑
𝑒𝛽𝑖𝑘

. (3)

Analogous to using multiple channels in CNNs, GAT allows multi-
head attention. By employing 𝐾 attention heads, node features
are updated with an activation function 𝜎 after a round of graph
convolution by message passing as follows:

−→
ℎ′𝑖 = 𝜎 (

1
𝐾

∑
𝑘

∑
𝑗

𝛼𝑘𝑖 𝑗W
𝑘−→ℎ 𝑗 ). (4)

Network Structure. Our SP predictor includes five GAT layers.
Represent each GAT layer as (𝐹, 𝐹 ′, 𝐾). The five GAT layers are
parameterized as: (2, 256, 4), (256, 128, 2), (128, 64, 2), (64, 32, 1), and
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Fig. 5. A teleport graph example. Small squares refer to the candidate
positions P = {𝑝𝑖 }, whose colors correspond to their SP scores {�̂�𝑖 }. A
teleport graph G is shown, which comprises a set of nodes V depicted in
cyan and a set of edges E represented as dashed lines.

(32, 16, 1), respectively. We use 𝑅𝑒𝐿𝑈 as the activation function
𝜎 . On an SP graph, messages are passed in both directions from
the human to the objects, and from the objects to the human. This
message passing manner resembles the scenario of scene perception,
where the human observes the environment and receives visual
information from the surrounding objects.
After the five-layer graph convolution, we only extract the final

feature of the human node
−→
ℎ′0 and pass it into a readout function

𝑅(·) to predict a score 𝑦:

𝑦 = 𝑅(
−→
ℎ′0). (5)

In our implementation, we represent 𝑅(·) as a multi-layer per-
ceptron (MLP). The predicted SP scores will be used to prompt
the teleport graph to include positions with high scores. Such a
consideration is incorporated as a cost term in the teleport graph
optimization discussed in Section 5.2.

5 TELEPORT GRAPH OPTIMIZATION
Our approach aims to produce desirable positions by considering
SP scores and other properties for supporting VR teleportation. The
position set is modeled using a teleport graph G. We incorporate
a few constraints on G into a cost function comprising several
cost terms. Based on the optimization formulation, we synthesize a
desirable teleport graph through a sampling process.

5.1 Teleport Graph Representation
We sample a set of candidate positions in the free space of the
input virtual scene using a grid with a 0.2m cell length. Let P =

{𝑝𝑖 } be the set of all candidate positions. Applying the trained SP
predictor (Section 4) to these candidate positions, we obtain a set of
predicted SP scores {𝑦𝑖 } correspondingly as a score map. Let 𝑀 (·)
be a mapping function that maps a candidate position to its SP score,
i.e.𝑀 (𝑝𝑖 ) = 𝑦𝑖 . Figure 5 depicts P and {𝑦𝑖 }.

Fig. 6. Node relationships. (a) Visibility among three nodes. An edge is
formed between each pair of nodes that are visible to each other. No edge is
added between the pair of nodes occluded by a wall. (b) The neighborhood
of the cyan node 𝑝𝑖 is highlighted as a circle. The candidate positions within
the neighborhood are shown in green.

We define a teleport graph as G = (V, E), where V is the set of
nodes corresponding to the selected positions and E is the set of
edges. Figure 5 shows an example. As each node corresponds to a
unique position, for notation convenience and brevity, we represent
each node as its corresponding position. HenceV = {𝑝†

𝑖
} is a subset

of P, where 𝑝†
𝑖
is a selected position.

Considering the connectivity between two selected positions 𝑝†𝑎
and 𝑝†

𝑏
, whether to add an undirected edge (𝑝†𝑎, 𝑝†𝑏 ) into E depends

on the pairwise adjacent visibility, as follows. Under a VR telepor-
tation setting, if the user is currently at position 𝑝†𝑎 , he or she can
teleport to position 𝑝†

𝑏
only if position 𝑝†

𝑏
is visible. In practice, we

cast a ray from position 𝑝†𝑎 to position 𝑝†
𝑏
to determine visibility.

If the positions are visible to each other and the distance between
them is shorter than a threshold (8m in our implementation), we add
an edge to connect them. Figure 6(a) shows an example. Note that
the visibility check is performed in 3D space even though Figure 6(a)
shows a top-down 2D view. Moreover, if there exists another posi-
tion between two positions, no edge is added between them even
though they are visible to each other.

As the edge set E is deterministically defined by the node set V ,
the node setV itself corresponds to a teleport graph configuration in
our search space. In other words, once the node setV is determined,
the corresponding edge set E can be computed, thus E changes as
V is updated in the optimization process.

We further define a position’s neighborhood region, within which
a user canmove bywalking. The neighborhood region is a circle with
a radius 𝑟 centered at position 𝑝𝑖 . Based on our observations that VR
users tended to walk only within a small region around a teleport
position and to move farther away by triggering a teleportation, we
set 𝑟 = 1.0m empirically. Figure 6(b) shows an illustration. The set
of candidate positions within the neighborhood of position 𝑝𝑖 is
defined as:

N(𝑝𝑖 ) = {𝑝 𝑗 |𝑝 𝑗 ∈ P ∧ |𝑝𝑖 − 𝑝 𝑗 | < 𝑟 }. (6)

5.2 Cost Function
We define a cost function to evaluate teleport graphs, which consists
of five cost terms for evaluating different properties. Our goal is
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Fig. 7. Effects of omitting costs. (a) A result synthesized by considering all costs. (b) Without the SP score consideration, positions with low SP scores are
sampled. (c) Without the connectivity consideration, disconnected graphs are synthesized; users cannot traverse the whole scene by teleporting continuously
as a result. (d) Without the area coverage consideration, the areas highlighted in red are uncovered and unexplored. (e) Without the room coverage cost, the
bathroom at the lower left is uncovered. (f) Without the redundant coverage consideration, the neighborhood areas of some nodes overlap severely.

to synthesize a teleport graph that makes the VR navigation: (1)
desirable, achieved by high SP scores of the included positions;
(2) complete, achieved by high coverage; and (3) efficacy, achieved
by avoiding redundant coverage and enforcing connectivity. Our
approach synthesizes a teleport graph by optimizing an overall cost
function composed of a weighted sum of cost terms:

𝐶 (G) =𝑤SP𝐶SP (G) +𝑤COV𝐶COV (G) +𝑤RCOV𝐶RCOV (G)
+𝑤CON𝐶CON (G) +𝑤REG𝐶REG (G) .

(7)

SP Score. Positions with high SP scores suggest that they might
offer desirable visual views and are more likely favored by users.
To encourage the teleport graph G to include positions with high
SP scores, we compute the mean SP score of G and penalize a low
mean score. We include an SP score cost defined as follows:

𝐶SP (G) = (1 −

∑
𝑝
†
𝑖
∈V 𝑀 (𝑝†

𝑖
)

|V| )2 . (8)

Coverage. A teleport graph is expected to help users navigate the
virtual scene efficaciously. Therefore we want the teleport graph G
to cover as much free space as possible. Meanwhile, we do not want
the graph to be too dense. The positions should keep reasonable
distances from each other. To strike this balance, we define that
a position is covered if it is within the neighborhood area of any
position in the set of selected candidate positions V . Formally, we
define the set of covered positions as:

VCOV = {𝑝𝑖 |∃𝑝†𝑗 ∈ V =⇒ 𝑝𝑖 ∈ N (𝑝†
𝑗
)}. (9)

With this definition, we define two sub-terms to evaluate area
and room coverage as follows.

Area Coverage:. As we sample positions to represent the whole

free space, the portion of covered area is approximated by |VCOV |
|P | .

We define the following term to penalize low area coverage:

𝐶AC (G) = (1 − |VCOV |
|P | )2 . (10)

Room Coverage:. With the area coverage term only, some rooms
are probably uncovered. Such a problem likely occurs in large indoor
scenes with some small rooms (e.g., bathrooms) as the small rooms
only constitute a relatively small portion of thewhole space and their
coverage has limited influence on the area coverage cost. However,
a teleport graph is supposed to be complete in the sense that it
should cover all rooms whether they are large or small. To this end,
we regard a room as being covered if there is at least one selected
position 𝑝†

𝑖
∈ P inside this room. Let 𝜑 be the percentage of covered

rooms over all rooms. We define the room coverage cost as:

𝐶RC (G) = (1 − 𝜑)2 . (11)

Combining the sub-terms, the coverage cost is defined as:

𝐶COV (G) = 𝑤AC𝐶AC (G) +𝑤RC𝐶RC (G), (12)

where𝑤AC and𝑤RC are the relative weights of these sub-terms.

Redundant Coverage. While we encourage the teleport graph to
cover as much space as possible, we also want the selected positions
to spread out so that they do not cover the same space redundantly.
We define that a position is redundantly covered if it is covered
more than once. We define the over-covered position set as:

VRCOV = {𝑝𝑖 |∃𝑝†𝑗 , 𝑝
†
𝑘
∈ V =⇒ 𝑝𝑖 ∈ N (𝑝†

𝑗
) ∧𝑝𝑖 ∈ N (𝑝†

𝑘
)}. (13)
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Fig. 8. Positions in a small neighborhood may have considerably different
SP scores due to changes in object visibility. In this example, a washer is
visible at the left position but not at the right position.

We define a cost term to penalize redundant coverage of areas:

𝐶RCOV (G) = ( |VRCOV |
|P | )2, (14)

where |VRCOV |
|P | approximates the portion of redundantly covered

area. Essentially, this cost term encourages the teleport graph to
include positions that are apart from each other so that their neigh-
borhood regions do not overlap.

Connectivity. To allow smooth and convenient VR navigation, it is
important to ensure the connectivity of the teleport graph G. As the
edges of a teleport graph are constructed according to the pairwise
adjacent visibility of the positions, only a connected graph allows
a user to start navigating the virtual scene at an arbitrary teleport
position and teleport through all other positions, traversing the
whole scene. In other words, if there are more than one connected
components in a teleport graph, a user would not be able to teleport
through the scene in a continuous manner. Therefore we include
a connectivity cost to penalize a teleport graph if its number of
connected components 𝜅 is larger than one:

𝐶CON (G) = 1 − 𝑒1−𝜅 . (15)

Regularization. We regularize the number of selected positions to
allow efficacious exploration of the solution space by our sampling
process, which we discuss in Section 5.3. We analyze the scene
data of the Gibson Database to obtain an estimate of the number
of positions present in a teleport graph G for a virtual scene. More
specifically, based on the scene data with human-marked positions
from the Gibson Environment, we fit a polynomial function 𝜆( |P|)
to give an expected number of selected positions based on the size
of the virtual scene (estimated by the total number of candidate
positions |P |). We include the following regularization cost to keep
the number of positions |V| close to 𝜆( |P|):

𝐶REG (G) =
{
0 if |V| ⩽ 𝜆( |P|)
𝛾
|V |−𝜆 ( |P |)+𝛾2
1 otherwise,

(16)

where 𝛾1 = 2 and 𝛾2 = −5 are hyperparameters. This cost softly
adds a penalty as the number of nodes is over 𝜆( |P|).
This cost term strikes a balance of acceptance probabilities be-

tween an Add action 𝐴a and a Delete action 𝐴d, which we discuss
in the supplementary material. Note that this cost could reach
𝛾
|P |−𝜆 ( |P |)+𝛾2
1 at most while all the other costs are in range [0, 1].
Unless otherwise specified, we set the weights as 𝑤SP = 3.0,

𝑤COV = 1.5 (with𝑤AC = 0.7 and𝑤RC = 0.3),𝑤RCOV = 1.0,𝑤CON =

2.0, and 𝑤REG = 1.0. Figure 7 shows the effects of omitting costs
(except the regularization cost) on the synthesized teleport graph.
Note that we used Figure 7(a) as the initialization to synthesize
(b) to (f) for comparison and illustration. Even though (a) and (b)
have similar graph structures, their SP scores differ considerably.
As Figure 8 shows, a small change in position in a neighborhood
may lead to significant SP score differences due to changes in object
visibility, caused by occlusion, for example.

5.3 Graph Optimization
We use simulated annealing [Kirkpatrick et al. 1983] to efficiently ex-
plore the solution space containing various teleport graph solutions.
We define a Boltzmann-like objective function:

𝑓 (G) = 𝑒−
𝐶 (G)

𝑡 , (17)

where 𝑡 is the temperature parameter in simulated annealing. The
optimization proceeds iteratively. For initialization, we randomly
sample 𝜆( |P|) positions from P and add them toV . Based on our
cost terms, we expect that the number of selected positions is around
𝜆( |P|). According to our definition of edges in a teleport graph, E
is determined by V in each iteration, and they form a complete
teleport graph representation G = (V, E).

Simulated annealing is controlled by the temperature parameter 𝑡 .
As the optimization begins, 𝑡 is set to be high to prompt the optimizer
to aggressively explore possible solutions. The temperature drops
over iterations by a decay factor until it reaches a low value near
zero. Such a setting essentially makes the optimizer more greedy
in refining the solution towards the end of the optimization. The
optimization process is terminated as the change in the total cost
𝐶 (G) converges (less than 3% over the past 100 iterations).

A teleport graph is sampled at each iteration. As a position may
be added or removed from the teleport graph, the number of se-
lected positions |V| may vary. To handle dimensionality-changing
cases, we apply the Reversible-jump Markov chain Monte Carlo
technique [Green 1995] to maintain the detailed balance condition.

5.4 Proposed Actions
In each optimization iteration, one of the following actions is ran-
domly applied to modify the teleport graph:

• Add a position: Randomly pick an unselected position 𝑝𝑖 ∈
P −V and add it to V .

• Delete a position: Randomly pick a selected position 𝑝†
𝑖
∈ V

and delete it from the teleport graph.
• Move a position: Randomly pick a selected position 𝑝†

𝑖
∈ V

and an unselected position 𝑝 𝑗 in its neighborhood such that
𝑝 𝑗 ∈ N (𝑝†

𝑖
) and 𝑝 𝑗 ∉ V . Replace 𝑝†

𝑖
with 𝑝 𝑗 (i.e. remove 𝑝†

𝑖
from V and add 𝑝 𝑗 to V).

The probabilities of choosing the three actions are Pa = 0.2,
Pd = 0.2, and Pm = 0.6, respectively. The acceptance probabilities
of the three actions are defined based on the RJMCMC formulation.

• The Add action is dimensionality-changing with acceptance
probability:

𝐴a (G∗ |G) = min(1, 𝑓 (G
∗)

𝑓 (G)
Pd
Pa

|P − V|
|V∗ | ) . (18)
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Fig. 9. Scene 1’s SP score map generated by our SP predictor.

• TheDelete action is dimensionality-changing with acceptance
probability:

𝐴d (G∗ |G) = min(1, 𝑓 (G
∗)

𝑓 (G)
Pa
Pd

|V|
|P − V∗ | ). (19)

• The Move action is not dimensionality-changing with accep-
tance probability:

𝐴m (G∗ |G) = min(1, 𝑓 (G
∗)

𝑓 (G) ) . (20)

6 RESULTS
We show prediction results of the SP predictor and teleport graph
synthesis results of the overall optimization approach. We discuss
the results for the four scenes shown in Figure 10, which are used
in the user study, in the main paper. The supplementary material
contains the results for the other 12 scenes. Moreover, we show that
our approach could be extended to handle different special scenarios
with exploratory experiments.

6.1 Implementation
We conducted our experiments on a machine equipped with an Intel
Core i7-9700 CPU and an NVIDIA GeForce RTX 2070 GPU. The SP
predictor was implemented in Python using Pytorch. Training the
model took about one day. In the inference stage, it generally takes
the SP predictor around 20−40 seconds to generate the SP score map
for typical indoor apartment scenes with 2k−4k positions in the free
space. The teleport graph optimization module was implemented in
the Unity3D game engine. A single teleport graph synthesis takes
about 5, 000 iterations and 2-3minutes based on our implementation.

6.2 Scene Perception Score Prediction
We first evaluated our GAT-based SP predictor’s ability to predict
human preferences of positions in indoor scenes. For comparison,
we built a baseline CNN model that directly took panoramic RGB-
D images rather than SP graphs as input. We directly used the
backbone of our trained object detector as the RGB feature extraction
model for the baseline, thus we expect the baseline to be object-
aware as well. In addition, we used a Resnet-18 network to process
the depth channel. The extracted RGB and depth features were
concatenated and fed into an MLP to produce an SP score.
Both the SP predictor and the baseline were trained on the SP

dataset described in Section 4.3. The SP predictor attained a root
mean squared error (RMSE) of 0.0591 on the test set, and the baseline
model achieved an RMSE of 0.0725.

Table 1. Quantitative results of SP score prediction for our SP predictor
(GAT) and the baseline (CNN) in the four experiment scenes. For AE 𝑝-value
of Ours/Baseline, bold indicate significant differences with 95% confidence.

Scene Pos.# RMSE AE Variance AE
Ours Baseline Ours Baseline 𝑝-value

1 4,766 0.057 0.069 0.0014 0.0018 6.83e-1
2 2,781 0.073 0.085 0.0019 0.0027 6.35e-3
3 4,639 0.049 0.071 0.0010 0.0023 9.92e-66
4 5,454 0.072 0.112 0.0038 0.0056 1.10e-55

Table 2. Statistics of our synthesized results in the four experiment scenes.
For each teleport graph, we calculate the percentage of covered area, and
the average SP score of selected positions versus that of candidate positions.

Scene Selected Covered Selected Pos. Candidate Pos.
Pos.# SP score SP score

1 19 67.13% 0.92 0.84
2 14 79.77% 0.94 0.80
3 19 68.15% 0.88 0.78
4 23 71.74% 0.91 0.82

While the SP dataset consists of panoramic RGB-D images synthe-
sized using real-world images, we further evaluated the predictor’s
performance with general virtual environments in the 16-scene
dataset described in Section 4.3. We show quantitative results, in-
cluding RMSE, absolute error (AE) variance, and t-test results of
Ours/Baseline considering AE, for Scene 1 to Scene 4 in Table 1. Fig-
ure 9 visualizes an example SP score map generated for Scene 1 by
our predictor. Refer to the supplementary material for comprehen-
sive results for all scenes. The results suggest that our SP predictor
produced more accurate results than the baseline method did.

6.3 Teleport Graph Synthesis for Indoor Scenes
We synthesize teleport graphs using our approach for the four indoor
scenes. Table 2 shows some result statistics. Figure 10 shows the
results and the panoramic views at some sampled positions. We
also show qualitative comparisons between synthesized graphs
with and without the SP score consideration in Section 3.3 in the
supplementary material.

In general, the synthesized teleport graphs are shaped well by the
cost function. First, for desirable navigation, each node is associated
with a position of a relatively high SP score in its neighborhood
area, which is vital as our approach is supposed to suggest desirable
positions to users. Second, for complete navigation, the synthesized
teleport graphs are connected, which means that a path exists be-
tween any arbitrary pair of nodes. Third, free space and all rooms
in the virtual scenes are well covered by the teleport graphs so that
users would not miss any area. Fourth, for efficacious navigation,
the number of positions is regularized such that users could perceive
rich visual information by traversing sparse teleport graphs.

6.4 Exploratory Experiments
Our approach can be extended to incorporate other considerations
in synthesizing teleport graphs. To demonstrate the generalizability
of our approach, we conducted exploratory experiments where we
modified our original approach to handle some special cases.

Position Density. In our approach, an approximate number of posi-
tions (nodes) for a teleport graph synthesis is predicted by 𝜆( |P|). In
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Fig. 10. Teleport graphs synthesized for different scenes. Each node is colored according to the SP score at its position. For each scene, the views at four
positions are visualized as panoramic images.
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Fig. 11. Using different target numbers of nodes for teleport graph synthesis.

practice, users might prefer to specify a target number of positions.
For example, some users may prefer to traverse a scene quickly by
visiting some key positions only, while other users may prefer to
navigate the scene in smaller steps by visiting more positions.

We allow such flexibility by replacing 𝜆( |P|) with a user-specified
target number of positions. First, we calculate a standard number
of positions by dividing the total area of free space of the scene
by a node’s neighborhood area. This number refers to the number
of positions needed to cover the whole free space in the ideal case
where all neighborhood regions do not overlap. Then we multiply
it with a density value to obtain a target number of positions.

Figure 11 shows two examples for Scene 1. The standard number
of positions of Scene 1 is 22. We assign a low density value of 0.6 to
obtain a target number of positions of 13 for synthesizing a sparse
graph. Similarly, we assign a high density value of 1.4 to obtain a
target number of positions of 30 for synthesizing a dense graph. Note
that both graphs cover the whole scene. We believe this flexibility
of controlling the target number of positions could provide a handy
navigation setting option for VR applications such as games.
Layout Change. There are scenarios where the furniture layout

of a virtual scene may change. For example, in an interactive VR
application such as a game, the user may move a furniture object.
On the other hand, when a designer models a virtual scene in a
game engine or an interior design application, the designer may
move the furniture objects. Our approach supports re-computation
of the teleport graph to cope with furniture object movements.
Suppose an initial teleport graph G has been synthesized for

a scene. If a furniture object is moved to a nearby position, our
approach updates the SP score map and the teleport graph as follows.

(1) Update the free space by removing candidate positions that
are now occupied by the moved furniture object from P;
and by adding candidate positions in the region previously
occupied by the furniture object to P.

(2) Removing the selected positions which are now occupied by
the moved furniture object from the node set V of graph G.

(3) Update the SP scores of positions from which the furniture
object can be seen before or after the furniture movement.

(4) Re-trigger the teleport graph optimization process starting
from G; use a low temperature to fine-tune the graph to
produce another graph G∗ that fits with the changed layout.

Figure 12 shows two examples of moving a furniture object in
Scene 1 and Scene 2. In each case, the teleport graph is updated to
cope with the furniture object movement (an update took around 30
seconds). The graph shows bigger adjustments in the region where

Fig. 12. Teleport graph fine-tuning induced by a change in the layout.

the object movement occurs, whereas the selected positions in the
other regions are slightly adjusted. Note that, if desired, the designer
could fix the selected positions far away from the moved furniture
object using hard constraints, or using soft constraints by adding a
regularization cost term to prompt the positions to stay constant.

Other Environments. While we focus on synthesizing teleport
graphs for indoor scenes, our approach could be extended to han-
dle other environments as long as the desirability of the teleport
positions in these environments could be evaluated. The evalua-
tion could be performed similarly by a data-driven approach with
suitable datasets or by heuristic principles set by a designer.
As an example, we tested this idea for a natural park environ-

ment as shown in Figure 13. For such a large outdoor environment,
teleportation is vital to efficacious navigation in virtual reality. To
facilitate wayfinding, we want users to be able to see the landmarks
(i.e. flags) when they navigate the park so that they are aware of
their locations. We use our approach to synthesize a teleport graph
for this park by making two changes, as follows.

• Score Map Generation: We redefine the SP score of a teleport
position based on the visibility of a flag within a certain
distance (i.e. 100m) from that position. If a user standing at a
position can see a flag within the distance, the position has
an SP score of 1. Otherwise, the position has an SP score of 0.

• Cost Terms: Unlike indoor scenes which are divided into
rooms, a natural park is not divided into distinct regions.
Therefore we turn off the room coverage cost term by setting
𝑤RC = 0. Akin to the number of positions preference experi-
ment, for the regularization cost term𝐶REG, we set the target
number of positions by using a density value of 20.0 instead
of using the polynomial function 𝜆(·).

Figure 13 shows synthesized results. A majority (81.48%) of the
teleport positions have a visible flag in their proximity. While the
graph covers the whole scene well, it also maintains connectivity.
Note that some positions where no flag is in sight are still selected to
satisfy the coverage and connectivity considerations. For example,
some positions are added between the pink flag and the brown flag
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Fig. 13. Teleport graphs synthesized for a natural park. Gray nodes denote
positions where no flag is visible. For the graph synthesized with all costs,
81.48% of the positions have a visible flag in their proximity. For the graph
synthesized without the SP score cost, only 54.22% of the positions have a
visible flag. No position is sampled from the inaccessible mountains.

to enhance connectivity even though no flag is visible at these posi-
tions. For comparison, we synthesize another teleport graph with
all costs except the SP score cost. Figure 13 shows the synthesized
graph, where only 54.22% of the teleport positions have a visible
flag nearby. The supplementary material contains the results for
two other environments: a canyon scene with the same SP score
definition as the natural park example and a multi-floor outlet scene
with a different SP score definition.

Fixing User-Specified Positions. In certain situations, a designer or
a user might want to visit particular positions such as some places
of interest in a virtual scene. To achieve this goal, we allow a de-
signer to define fixed nodes for a teleport graph and then run our
approach. By not applying any action to these nodes in the teleport
graph sampling and optimization process, the fixed nodes are kept
unchanged. Figure 14 shows two examples on Scene 1 and Scene
2. The green nodes, which correspond to some places of interest,
are assigned and fixed by the designer. For each scene, two teleport
graphs are synthesized. It can be observed that the fixed nodes are
guaranteed to be included in the generation process, while other
nodes and edges might vary. Therefore, it is possible to synthesize
different teleport graphs that share these fixed nodes. This feature is
useful for extending our approach to consider interactive VR scenar-
ios: Designers may specify positions where interactive objects are
accessible and synthesize teleport graphs based on such constraints.

7 USER STUDY
We conducted a user study to validate if our synthesized teleport
graph could improve teleportation efficiency in comparison to a
conventional approach that requires users to manually determine

Fig. 14. Fixing user-defined positions in teleport graphs. Green nodes denote
the fixed positions, which are shared by all syntheses in the same scene.

teleport positions. By analyzing virtual environments, predicting
human preferences, and then synthesizing teleport graphs, we ex-
pect that our approach could make up for the deficiencies that users
have no prior knowledge about unknown environments, thus al-
lowing users to navigate an environment more efficaciously in VR.
We also examined if our SP predictor is able to produce reasonable
predictions of desirable positions.

7.1 Settings
In this user study, we compare navigating virtual environments
using a teleport graph synthesized by our approach (ours) with
the conventional "point & teleport" (P&T ) approach [Bozgeyikli
et al. 2016]. For ours, the suggested positions of synthesized teleport
graphs are visualized as glowing anchors in the environment, which
the participant can point at and teleport to. Note that while the
edges of teleport graphs encode constraints such as connectivity,
they are not visualized during VR navigation. For P&T, there is no
synthesized teleport graph and no teleport anchor. The participant
chooses their own teleport positions. In our experiments, we applied
the Dash [Bhandari et al. 2018] technique to gradually change the
viewpoint when teleporting to reduce spatial disorientation and
enhance user experience.

We recruited 32 participants to navigate in the four virtual apart-
ment scenes shown in Figure 9 using anOculus Quest 2, an all-in-one
VR system consisting of a VR headset and two controllers. All par-
ticipants were undergraduate or graduate students, including 11
females and 21 males aged 19 through 28. Since we compare two
approaches in four scenes, there are eight possible conditions in to-
tal. A participant used either of the two approaches to explore each
scene. Hence there are 128 navigation records in total. Through a
pseudorandom procedure, we ensured that (1) one participant used
ours in two scenes and used P&T in the other two scenes; (2) the
occurrences of all conditions were counterbalanced such that there
are 16 navigation records for each condition.

7.2 Procedure
Our user study procedure was approved by the Institutional Review
Board. One round of study comprises three stages as follows.

Warm Up. Before navigation experiments, we prepared a warm
up scene where participants got familiar with device operations, and
how to use both ours and P&T to navigate the scene. Participants
could stay in the warm up session as long as they wanted.
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Fig. 15. Mean teleport counts versus exploration ratio. Error bars show
standard errors. With the help of the anchor positions of the teleport graphs
(ours), the participants generally took fewer teleports to explore a scene.

Navigation. This is the main stage of the user study. The partici-
pants navigated in the four virtual scenes for given conditions. The
goal was to investigate whether ours could lead to more efficacious
VR navigation. While we asked them to freely explore the scenes
and to observe the context (structure, objects, furniture, etc.) of the
environments, there was no mandatory requirement or goal that
they needed to achieve. For each condition, a participant stayed
in the assigned scene for two minutes and was transferred to the
next scene afterwards. Note that participants could still manually
select and teleport to any desired position even when they were in
conditions with ours where anchor positions were presented.

Desirability Evaluation. The purpose of this stage is to validate
whether the suggested positions given by our SP predictor matched
human preferences. This stage was conducted in a two-alternative
forced choice (2AFC) manner. The procedure is similar to the pilot
study in Section 4.3: participants visit a pair of virtual positions in
an immersive manner through VR devices, and they were asked
to choose the position with a more desirable view based on the
surrounding objects (e.g., furniture, decoration).

We picked the two scenes which a participant visited using P&T
in the navigation stage, and the participant was transferred to three
pairs of positions in each scene. In a comparison pair, one position
was randomly selected from the participant’s manual choices (man-
ual), and the other was randomly selected from the anchor positions
(anchor) of the teleport graph for that scene under ours.

7.3 Results
Navigation. We recorded participants’ trajectories during the ex-

periment procedure. We define two metrics: (1) exploration ratio,
which is the percentage of scene area covered by all visited posi-
tions’ neighborhood areas; and (2) anchor choice ratio, which is the
percentage of counts an anchor position is chosen in all teleports.
The anchor choice ratio is used for the conditions with ours. In our
analysis, we found that although participants’ exploration progress
varied given the two-minute time limit, most of them explored more
than 50% of a scene under either ours or P&T, with a mean of 71.44%
and a standard deviation of 16.32%. We obtained a mean anchor

Table 3. Participants’ choices for anchor results and manual results. Chi-
square analysis results are shown in 𝑝-values (bold indicates anchor results
are preferred with a 95% confidence level). Bayesian analysis results are
shown in odds𝑂10 on the alternative hypothesis𝐻1 over the null hypothesis
𝐻0 (bold indicates anchor results are preferred with evidence).

Scene Anchor# vs. Manual# 𝑝-value 𝑂10
1 34 : 14 0.0039 11.91
2 31 : 17 0.0433 1.35
3 33 : 15 0.0094 5.25
4 29 : 19 0.1489 0.50

choice ratio of 66.95% for conditions with ours, with a standard de-
viation of 21.40%. We show the distribution of participants’ anchor
choice ratios in the supplementary material. In our analysis, we dis-
card 5 statistical outliers out of 128 navigation records considering
the exploration ratio or the anchor choice ratio. There are 14 to 16
pieces of data remaining for each condition.
We did not evaluate participants’ performances using the time

they spent to reach specific exploration ratios due to varying nav-
igation habits (i.e., some participants perceived the scenes more
carefully and explored slower, and some others navigated faster).
Instead, we counted the number of teleports performed when par-
ticipants’ exploration ratio reached 10%, 20%, 30%, 40%, and 50%,
respectively. Data was truncated at the 50% exploration ratio in
our analysis because 50% is a rough bar that all remaining data
reached (i.e. some records could not reach higher ratios). If peo-
ple perform fewer teleports using one approach than the other
to reach the same exploration ratio in a scene, it would suggest
that this approach is more efficacious. We average our collected
data in each of the eight conditions and present the results in Fig-
ure 15. In all of the four scenes, participants performed fewer tele-
ports using ours than using P&T, thus attained improvement in
VR teleportation efficiency. We show boxplots for all conditions
in our supplementary material. We performed a t-test to examine
the differences in teleport counts at the exploration ratio of 50%
using the two approaches for each scene. Significant differences
(𝑝 = 4.57e−4, 3.50e−6, 3.34e−5, 2.33e−3, respectively) were found.
We also measured the effect size by calculating the Cohen’s 𝑑 , and
found very large effect sizes (𝑑 = 1.67, 2.20, 1.87, 1.28, respectively)
according to [Sawilowsky 2009].

An interesting observation is that in conditions where P&T was
used, to move to a different region, a participant usually triggered a
sequence of intermediate teleports along the trajectory and finally
stayed at a destination. In contrast, under ours, participants usually
directly jumped to anchor positions without intermediate teleports.
This might explain why people performed more teleports using P&T.
By predicting and suggesting desirable positions, our approach could
reduce the number of participants’ teleports.

Desirability Evaluation. We collected 48 pairs of participants’
forced choices for each scene. Our null hypothesis 𝐻0 was that
users perceive no significant difference in the desirability of anchor
and manual, and the alternative hypothesis 𝐻1 was that users did
perceive significant differences. We first adopted the Chi-square
nonparametric analysis technique. The obtained optimal/random
frequency in each scene were compared to an expected 24/24 re-
sult to ascertain whether this difference is significant. Second, we
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adopted a Bayesian analysis to determine whether the number of
participants who selected anchor was what would be expected by
chance, or if there was a preference pattern. We assumed that the
participant had a probability 𝑃 of picking anchor, and used a bino-
mial distribution to model the results. We computed the odds𝑂10 on
𝐻1 over𝐻0. According to [Rouder et al. 2009],𝑂10 > 3 shows "some
evidence", whereas 𝑂10 > 10 shows "strong evidence", favoring 𝐻1.
Numerical results are shown in Table 3. Generally, more people

prefer to choose anchor than manual. For the Chi-square analysis
results, the 𝑝 values are 3.89e−3, 4.33e−2, 9.37e−3 and 1.49e−1 for
the 4 scenes respectively, and significant differences were found in
Scene 1, Scene 2 and Scene 3. For the Bayesian analysis results, the
odds 𝑂10 are 11.91, 1.35, 5.25 and 0.50 in the 4 scenes respectively,
and evidence favoring 𝐻1 was found in Scene 1 and Scene 3.
The results might indicate three points: (1) Using P&T, partici-

pants occasionally chose teleport positions that they did not favor.
Consistent with our observation, the reason could be the lack of
prior knowledge about the views at the positions before teleporting;
(2) Using ours, participants were generally able to move to desirable
positions in the teleport procedure, suggesting that our SP predictor
is capable of predicting the desirability of positions; (3) Preferences
towards the positions suggested by ours are more prominent in
scenes with a larger open space. In contrast, in scenes with a small
open space, the anchor positions and manual positions tend to be
close to each other. For example, Scene 4 consists of a narrow corri-
dor that connects small rooms. As a result, the teleport positions,
whether suggested by anchor or selected by manual, have similar
panoramic views. This may explain why the preference difference
is not significant as indicated by a small odd 𝑂10 = 0.50.

8 CONCLUSION
We presented scene-aware VR teleport graphs aiming to improve
virtual navigation. Our approach predicts desirable positions in vir-
tual environments via a graph convolutional model and synthesizes
teleport graphs via an optimization. Experiments show that our SP
predictor is reliable, and the synthesized teleport graphs satisfy a set
of VR teleportation constraints. Through exploratory experiments,
we also demonstrated the generalizability of our approach which
allows users to control the synthesis for different practical scenarios.
Our user study suggests that our teleport graphs help users navi-
gate virtual environments more efficaciously, and our SP predictor
suggests desirable positions that match human preferences.

8.1 Limitations and Future Work
As our SP predictor is trained to work on indoor scenarios, it cannot
predict the desirability of outdoor positions. For this reason, in our
implementation, we also discarded sampled positions in balconies
with outdoor views. In the future, if large-scale panorama dataset
of outdoor scenes (e.g., campus, parks, downtowns) becomes avail-
able, it would be interesting to train an SP prediction model for
predicting the desirability of teleport positions for outdoor environ-
ments. To circumvent this current limitation to deal with general
environments, we propose a substitute of the SP prediction model
by replacing the SP score with other user-defined scores based on
heuristics as discussed in Section 6.4.

In our work, we focus on navigation for visually perceiving the
environments. In some different navigation scenarios which prior-
itize other considerations (e.g., interaction or sound) rather than
visual perception, the usage of predicted SP score could be limited.
For example, if some positions associated with interactive events are
predicted with low SP scores, the predicted perception would hinder
incorporating those positions into teleport graphs. Variations of
our current constraints or new considerations could be applied to
handle specific cases.

We validated that users could (1) explore virtual scenes with fewer
teleport actions, and (2) obtain more visually-desirable views using
our method compared to conventional teleportation in Section 7.
We also provided qualitative analysis on comparisons of synthesized
teleport graphs with and without the SP score cost in the supple-
mentary material. In future work, it would be interesting to perform
a perceptual study on how the SP consideration may influence users’
navigation behaviors. For example, one may investigate users’ nav-
igation performances using teleport graphs synthesized with and
without SP considerations.

We are also interested in more in-depth user studies to investigate
how our approach could help VR navigation. For example, we can
define a set of clearly defined tasks that need to be completed via
teleportation, and analyze users’ behaviors with some task perfor-
mance metrics and subjective usability metrics. Moreover, it is worth
studying how participants’ familiarity with VR could influence their
teleportation behaviors.
We used the SP graphs to model spatial relationships between a

user and the surrounding objects. Beside facilitating teleportation,
the SP graphs might find other interesting applications too, such as
for positioning virtual agents and driving them to navigate naturally
in virtual environments based on their visual observations of the
surrounding objects.

We formulate an optimization-based framework for synthesizing
teleport graphs, which is extensible and amenable to user control
by adjusting the optimization parameters. In case we can obtain an
enormous amount of teleportation data from many users in virtual
reality in the future (e.g., from VR social platforms), it would be
worth investigating how to train an end-to-end data-driven model
such as a deep generative model of graphs [Li et al. 2018; Wang et al.
2019] to synthesize teleportation graphs.
Another interesting direction for future work is to extend our

approach to accommodate users with different mobility restrictions.
For example, for wheelchair users, it would be reasonable to use a
smaller radius 𝑟 for neighborhood regions, since it could be chal-
lenging for those users to freely move around a teleport position.

Navigation habits vary among users. For example, some usersmay
like to contemplate decorations, whereas others may like to traverse
an environment quickly. Future works might consider learning user
navigation habits to synthesize personalized teleport graphs.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their constructive
comments. We thank Amilcar Gomez Samayoa and Javier Talavera
for their help with the user study. This project was supported by an
NSF CAREER Award (award number: 1942531).

ACM Trans. Graph., Vol. 40, No. 6, Article 229. Publication date: December 2021.



Synthesizing Scene-Aware Virtual Reality Teleport Graphs • 229:15

REFERENCES
Majed Al Zayer, Paul MacNeilage, and Eelke Folmer. 2018. Virtual locomotion: a survey.

IEEE transactions on visualization and computer graphics (2018).
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
(2014).

Jiwan Bhandari, Paul R MacNeilage, and Eelke Folmer. 2018. Teleportation without
Spatial Disorientation Using Optical Flow Cues.. In Graphics interface. 162–167.

Costas Boletsis. 2017. The new era of virtual reality locomotion: A systematic litera-
ture review of techniques and a proposed typology. Multimodal Technologies and
Interaction 1, 4 (2017), 24.

Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. 2016. Point &
teleport locomotion technique for virtual reality. In Proceedings of the 2016 Annual
Symposium on Computer-Human Interaction in Play. ACM, 205–216.

Fabio Buttussi and Luca Chittaro. 2019. Locomotion in Place in Virtual Reality: A
Comparative Evaluation of Joystick, Teleport, and Leaning. IEEE transactions on
visualization and computer graphics (2019).

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D:
Learning from RGB-D Data in Indoor Environments. International Conference on 3D
Vision (3DV) (2017).

Shih-Han Chou, Cheng Sun, Wen-Yen Chang, Wan-Ting Hsu, Min Sun, and Jianlong
Fu. 2020. 360-Indoor: Towards Learning Real-World Objects in 360deg Indoor
Equirectangular Images. In The IEEE Winter Conference on Applications of Computer
Vision. 845–853.

Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. 2018. Spherenet:
Learning spherical representations for detection and classification in omnidirectional
images. In Proceedings of the European Conference on Computer Vision. 518–533.

Zhi-Chao Dong, Xiao-Ming Fu, Zeshi Yang, and Ligang Liu. 2019. Redirected smooth
mappings for multiuser real walking in virtual reality. ACM Transactions on Graphics
(TOG) 38, 5 (2019), 1–17.

Li Fei-Fei. 2007. Recognizing and learning object categories. CVPR Short Course, 2007
(2007).

Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, and Kun Zhou. 2016. Crowd-driven
mid-scale layout design. ACM Trans. Graph. 35, 4 (2016), 132–1.

Sebastian Freitag, Benjamin Weyers, and Torsten W Kuhlen. 2016. Automatic speed
adjustment for travel through immersive virtual environments based on viewpoint
quality. In 2016 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 67–70.

Sebastian Freitag, BenjaminWeyers, and TorstenWKuhlen. 2017. Efficient approximate
computation of scene visibility based on navigation meshes and applications for
navigation and scene analysis. In 2017 IEEE Symposium on 3D User Interfaces (3DUI).
IEEE, 134–143.

Sebastian Freitag, Benjamin Weyers, and Torsten W Kuhlen. 2018. Interactive explo-
ration assistance for immersive virtual environments based on object visibility and
viewpoint quality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). IEEE, 355–362.

Markus Funk, Florian Müller, Marco Fendrich, Megan Shene, Moritz Kolvenbach, Niclas
Dobbertin, Sebastian Günther, and Max Mühlhäuser. 2019. Assessing the Accuracy
of Point & Teleport Locomotion with Orientation Indication for Virtual Reality
using Curved Trajectories. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–12.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hardness
results and efficient alternatives. In Learning theory and kernel machines. Springer,
129–143.

Wilson S Geisler. 2008. Visual perception and the statistical properties of natural scenes.
Annu. Rev. Psychol. 59 (2008), 167–192.

Peter J Green. 1995. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika 82, 4 (1995), 711–732.

MP Jacob Habgood, David Moore, David Wilson, and Sergio Alapont. 2018. Rapid,
continuous movement between nodes as an accessible virtual reality locomotion
technique. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 371–378.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

Peter Hedström and Charlotta Stern. 2008. Rational choice and sociology. The new
Palgrave dictionary of economics 2 (2008).

Dichao Hu. 2019. An introductory survey on attention mechanisms in NLP problems.
In Proceedings of SAI Intelligent Systems Conference. Springer, 432–448.

Laurent Itti, Christof Koch, and Ernst Niebur. 1998. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine
intelligence 20, 11 (1998), 1254–1259.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by simulated
annealing. science 220, 4598 (1983), 671–680.

Eike Langbehn, Paul Lubos, and Frank Steinicke. 2018. Evaluation of locomotion
techniques for room-scale vr: Joystick, teleportation, and redirected walking. In

Proceedings of the Virtual Reality International Conference-Laval Virtual. 1–9.
Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018. Learning

deep generative models of graphs. arXiv preprint arXiv:1803.03324 (2018).
Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma, Hao-Shu Fang, Yanfeng Wang,

and Cewu Lu. 2019. Transferable interactiveness knowledge for human-object
interaction detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 3585–3594.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. 2017. Feature pyramid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2117–2125.

Imran Mahalil, Azmi Mohd Yusof, Nazrita Ibrahim, Eze Manzura Mohd Mahidin, and
Mohd Ezanee Rusli. 2019. Virtual RealityMiniMap Presentation Techniques: Lessons
and experience learned. In 2019 IEEE Conference on Graphics and Media (GAME).
IEEE, 26–31.

Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu. 2018a.
Learning human-object interactions by graph parsing neural networks. In Proceed-
ings of the European Conference on Computer Vision (ECCV). 401–417.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. 2018b.
Human-centric indoor scene synthesis using stochastic grammar. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 5899–5908.

Sharif Razzaque, Zachariah Kohn, and Mary C. Whitton. 2001. Redirected Walking. In
Eurographics 2001 - Short Presentations. Eurographics Association. https://doi.org/
10.2312/egs.20011036

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems. 91–99.

Ronald A Rensink. 2000. Scene perception. Encyclopedia of psychology 7 (2000), 151–155.
Jeffrey N Rouder, Paul L Speckman, Dongchu Sun, Richard D Morey, and Geoffrey

Iverson. 2009. Bayesian t tests for accepting and rejecting the null hypothesis.
Psychonomic bulletin & review 16, 2 (2009), 225–237.

Shlomo S Sawilowsky. 2009. New effect size rules of thumb. Journal of modern applied
statistical methods 8, 2 (2009), 26.

Ehsan Sayyad, Misha Sra, and Tobias Höllerer. 2020. Walking and Teleportation in
Wide-area Virtual Reality Experiences. In 2020 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 608–617.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research 12, 9 (2011).

Mel Slater, Martin Usoh, and Anthony Steed. 1995. Taking steps: the influence of a
walking technique on presence in virtual reality. ACM Transactions on Computer-
Human Interaction (TOCHI) 2, 3 (1995), 201–219.

Richard Stoakley, Matthew J Conway, and Randy Pausch. 1995. Virtual reality on a
WIM: interactive worlds in miniature. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 265–272.

Qi Sun, Anjul Patney, Li-Yi Wei, Omer Shapira, Jingwan Lu, Paul Asente, Suwen Zhu,
Morgan Mcguire, David Luebke, and Arie Kaufman. 2018. Towards virtual reality
infinite walking: dynamic saccadic redirection. ACM Transactions on Graphics (TOG)
37, 4 (2018), 67.

Oytun Ulutan, ASM Iftekhar, and Bangalore S Manjunath. 2020. VSGNet: Spatial Atten-
tion Network for Detecting Human Object Interactions Using Graph Convolutions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
13617–13626.

Martin Usoh, Kevin Arthur, Mary C Whitton, Rui Bastos, Anthony Steed, Mel Slater,
and Frederick P Brooks Jr. 1999. Walking> walking-in-place> flying, in virtual
environments. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 359–364.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903
(2017).

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt.
2010. Graph kernels. The Journal of Machine Learning Research 11 (2010), 1201–1242.

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X Chang, and Daniel
Ritchie. 2019. Planit: Planning and instantiating indoor scenes with relation graph
and spatial prior networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–15.

Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese.
2018. Gibson env: real-world perception for embodied agents. In Proceedings of the
IEEE conference on computer vision and pattern recognition.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2019. Graph convolutional
networks: a comprehensive review. Computational Social Networks 6, 1 (2019), 11.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words model: a
statistical framework. International Journal of Machine Learning and Cybernetics 1,
1-4 (2010), 43–52.

Yixin Zhu, Chenfanfu Jiang, Yibiao Zhao, Demetri Terzopoulos, and Song-Chun Zhu.
2016. Inferring forces and learning human utilities from videos. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 3823–3833.

ACM Trans. Graph., Vol. 40, No. 6, Article 229. Publication date: December 2021.

https://doi.org/10.2312/egs.20011036
https://doi.org/10.2312/egs.20011036

	Abstract
	1 Introduction
	2 Related Work
	2.1 Virtual Reality Locomotion
	2.2 Teleportation
	2.3 Scene Perception Graph

	3 Overview
	4 Scene Perception Prediction
	4.1 Scene Perception Graph Extraction
	4.2 Scene Perception Score
	4.3 Dataset
	4.4 Prediction via Graph Convolution

	5 Teleport Graph Optimization
	5.1 Teleport Graph Representation
	5.2 Cost Function
	5.3 Graph Optimization
	5.4 Proposed Actions

	6 Results
	6.1 Implementation
	6.2 Scene Perception Score Prediction
	6.3 Teleport Graph Synthesis for Indoor Scenes
	6.4 Exploratory Experiments

	7 User Study
	7.1 Settings
	7.2 Procedure
	7.3 Results

	8 Conclusion
	8.1 Limitations and Future Work

	Acknowledgments
	References

