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1 ADDITIONAL CONSTRAINTS
We provide additional constraints that help to better pose instances
in the scene during the optimization.

Repulsion. This type of constraint is a variation of position-based
constraints. In our work, position-based constraints serve to keep
associated objects close to each other. However, in special cases
where a position-based constraint exists in a keyframe but is re-
moved in the next keyframe, a repulsion constraint is automatically
added into the next keyframe to repel them away from each other.
For example, a character is on the side of a table at keyframe 𝑘 , but
the relation is deleted at keyframe 𝑘 + 1, a repulsion constraint is
applied at keyframe 𝑘 + 1 since we expect the character to be no
longer on the side of the table.

Concretely, for a position-based constraint defined as 𝐶p (𝑢, 𝑣) =
1 − 𝑒_𝐷−𝑑 (𝑢,𝑣) (refer to Equation 6 in our main paper) with a target
distance 𝐷 and a distance function 𝑑 (𝑢, 𝑣), its accompanying repul-
sion constraint, on the contrary, encourages instances 𝑢 and 𝑣 to
keep a distance larger than 𝐷 , and thus is defined as:

𝐶r (𝑢, 𝑣) = max
(
1 − 𝑒𝑑 (𝑢,𝑣)−

1
_
𝐷 , 0

)
(1)

Note that theoretically, this is also a position-based constraint
and thus is considered during the coarse 2D optimization.

Movement continuity. This is an optional constraint. Different
from previously discussed constraints, this type of constraint consid-
ers a character’s position change between two adjacent keyframes.
The motivation for introducing this constraint is that while a char-
acter can move from the position in a previous keyframe due to
changes in associated position-based constraints, we expect such
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movements to be minor in specific cases to preserve some conti-
nuity. To illustrate, we use the same example as in the discussion
of repulsion constraints: When the barber is repelled such that the
customer is not reachable, the optimizer may move this barber far
away from the original position, which can be counter-intuitive to
real-life experiences. The movement continuity constraint regarding
a character 𝑢 at keyframe 𝑘 is:

𝐶mc (𝑢𝑘 , 𝑢𝑘+1) =
[
𝑑 (𝑢𝑘 , 𝑢𝑘+1)
𝑑 (𝑢𝑘 , 𝑝†𝑘 )

]2
, (2)

where the distance function 𝑑 (𝑢𝑘 , 𝑢𝑘+1) computes the walking dis-
tance for𝑢 considering its positions in keyframe𝑘 and𝑘+1. 𝑝†

𝑘
refers

to the farthest position in the scene from 𝑢’s position at keyframe
𝑘 , thus 𝑑 (𝑢𝑘 , 𝑝†𝑘 ) denotes the upperbound of 𝑢’s walking distance
during keyframe 𝑘 to 𝑘 + 1. The walking distance is computed using
an A* shortest path algorithm. This is a position-based constraint
and is considered during the coarse 2D optimization.

Object orientation alignment. This is an optional constraint. To
keep the tidiness of the scene, it is sometimes desired to align ob-
jects with respect to their orientations. For example, in the cooking
activity in Figure 8 shown in our main paper, tables near the top
side are constrained to face down and tables near the right side are
constrained to face left. This constraint can be directly modified
from Equation 7 in the main paper such that:

𝐶oa (𝑢) =
1 − 𝑠 (f𝑢 , f′𝑢 )

2
, (3)

where the orientation suitability function 𝑠 (f𝑢 , f′𝑢 ) here evaluates
the suitability between object 𝑢’s forward direction f𝑢 and its ex-
pected forward f′𝑢 . This is an orientation-based constraint and is
only considered during the fine 3D optimization.

Object position alignment. This is an optional constraint. Similar
to the discussion about orientation alignment, positions can also
be constrained for better alignments. For example, in the "barber
service" activity in Figure 8 shown in our main paper, an object
position alignment constraint is applied for the three chairs such
that they are placed in a line and are evenly distributed. Assuming
a set of objects {𝑂} are expected to face the same direction using
the object orientation alignment constraint, the position alignment
constraint is associated with the whole group and is defined as:

𝐶pa ({𝑂}) = 1 − 1
2

(
𝑒
𝑆𝐷

𝑥/𝑦
{𝑂} + 𝑒

𝑆𝐷𝑑𝑖𝑠
{𝑂}

)
, (4)

where 𝑆𝐷𝑥/𝑦
{𝑂 } is the standard deviation of their coordinates on ei-

ther x or y axis on the 2D floor plane depending on their expected
facing direction. For example, suppose the three chairs in the "bar-
ber service" activity in Figure 8 of our main paper are expected to
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Fig. 1. An illustration of the scalable "pass object" test scenario. In each
round, the objects are first passed from the two previous owners to the two
next customers, and then the two waiters go to serve the new object owners.

align along the 𝑥 axis. As a result, their 𝑦 coordinates should be
similar so their 𝑆𝐷𝑦

{𝑂 } is small. 𝑆𝐷𝑑𝑖𝑠
{𝑂 } is the standard deviation of

distances between pairwise adjacent objects. This is a position-based
constraint and is considered during the coarse 2D optimization.

2 PROGRESSIVE OPTIMIZATION
In this section, we discuss our preliminary study of devising the pro-
gressive optimization framework. We create a scalable test scenario
for a "pass object" game: there are five customers 𝑐1, 𝑐2, 𝑐3, 𝑐4, and
𝑐5, sitting near a table, and two waiters𝑤1 and𝑤2 who are ready
to serve the customers. Two objects, 𝑜1 and 𝑜2 are placed on the
table. The rule is that the waiters always go to serve customers who
currently own the objects, and stay on the side of them. Initially, 𝑜1
and 𝑜2 belong to 𝑐1 and 𝑐2 respectively (such that they are within
a reachable distance from 𝑐1 and 𝑐2; refer to details in Section 6.1
in the main paper). After the initial keyframe, the activity can be
infinitely scaled up by iteratively extending the number of rounds 𝑟 :

(1) At keyframe 𝑘 , the two objects are passed to the next two cus-
tomers. If they belong to 𝑐4 and 𝑐5 at keyframe 𝑘 − 1, the old
relations are deleted, and new relations 𝑜1 belongs to 𝑐1 and 𝑜2
belongs to 𝑐2 are created at keyframe 𝑘 . Meanwhile, the relations
𝑤1 on the side of 𝑐4 and𝑤2 on the side of 𝑐2 are also deleted, thus

Table 1. Quantitative results of optimizing instances’ positions in a series
of scalable activities, comparing the standard simulated annealing (SA)
and our progressive optimization (ours). "Ours (X)" indicates a progressive
optimization with X phases.

Rounds No. of No. of Final Cost
Constraints Iterations Standard Ours (X)

10 49 15,000 0.02 0.02 (3)
20 89 15,000 1.98 0.23 (4)
50 209 15,000 11.37 4.77 (4)
100 409 23,000 60.64 24.09 (5)

𝑤1 and𝑤2 should be repelled from 𝑐4 and 𝑐5 by the repulsion
constraint described in Equation 1.

(2) At keyframe𝑘+1, the twowaiters whowere serving the previous
owners of the objects, move to serve the new owners determined
at keyframe 𝑘 . New relations on the side of are added between
the waiters and the new owners.
Figure 1 illustrates the setting. A scalable activity of 𝑟 rounds

contains 2𝑟 + 1 keyframes and 4𝑟 + 9 constraints (9 from the inital
keyframe and 4 for every round). Note that when counting the num-
ber of constraints here, we only count the ones that are considered in
practice because some constraints consistently appear throughout
continuous keyframes, and thus can be excluded from the optimiza-
tion to reduce unnecessary computations. Refer to discussions in
Section 6.2.1 our main paper.

Table 1 shows quantitative results of optimizing instances’ posi-
tions in the scalable activities, comparing the standard simulated an-
nealing and our progressive optimization. The results demonstrate
the effectiveness of the progressive optimization: using the standard
simulated annealing, the optimization could easily get stuck at local
minimums, while our progressive solver got apparently lower final
costs when the activity scaled up.

3 ADDITIONAL EXPERIMENT DETAILS AND RESULTS

3.1 Generating and Instantiating Activity Snippets
In addition to the generated activity snippets presented in our main
paper, we provide four additional activity snippets in Figure 6. Full
activities with animations are visualized in our supplementary video.

We show another instantiation of the "serve food" activity (Figure
8 in our main paper) in Figure 4, where objects were substituted
with objects with the same semantic labels but different geometries.
We also demonstrate an example of activity transition in Figure 5,
which shows a follow-up "clean up table" activity to the "serve food"
activity (Figure 8 in our main paper). When generating keyframe
descriptions for the "clean up table" activity, the last keyframe of the
"serve food" activity was used as an initial keyframe. Furthermore,
the initial 3D placements of instances were also inherited from
the last keyframe of "serve food" activity and were fixed when
instantiating the subsequent keyframes.

3.2 Data Preparation for Synthetic Activities
Our training data of synthetic activities is created via a simulation
based on the rules and recipes. In Overcooked, symbolic actions
such as getting or putting down an object at a locationare allowed,
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Fig. 2. The recipe of preparing a burger in the video game Overcooked.

triggering the functionalities of objects when required ingredients
are ready. Like the example shown in Figure 2, recipes can be rep-
resented as directed graphs, in which nodes of zero in-degree are
practicable tasks currently, and the node of zero out-degree is the
target dish. While different types of ingredients in Overcooked have
their own location to be accessed, we simplify the scenario and
combine the source locations of all raw ingredients as "refrigerator".
In our work, we only assume there are two chefs in the kitchen. We
create two sets of cooking tools (e.g., stoves, chopping boards) by
default such that they can collaborate with no tool usage conflicts.

When the simulation starts, both chefs are idle. Each chef ran-
domly picks a practicable task by checking the recipe graph con-
tinuously until the whole cooking task is completed. In case a chef
cannot find a practicable task, the chef stays idle. When a practi-
cable task is done, it is removed from the graph, and its successor
could become a new practicable task if its in-degree becomes zero.
In practice, practicable tasks are further converted into lower-level
symbolic actions. For example, for the "get beef" task, the symbolic
actions should include: (1) Go to the refrigerator; (2) Get a slice of
beef from the refrigerator; (3) Go to a chopping board; (4) Put the
beef on the chopping board. Note that (3) and (4) are determined
based on the recipe: in the example shown in Figure 2, the next
step after getting the beef is to chop it. It is common that the final
action sequences of the two chefs are of different lengths, and we
add random "idle" actions to keep the sequences the same length.
We included 14 recipes as the activity labels in this experiment.

For each label, different orders of action sequences (including ran-
dom "idle" actions) allow various valid activity advancements, and
we synthesized 500 pieces of training data in total.

3.3 Perceptual Study
Statistical results of ratings for each activity snippet individually
are shown in Table 2. For all snippets on all metrics, the median
values are all 4, and the mean values are close to 4.00. In conclusion,
most participants gave position ratings on the qualities of generated
activity snippets. Figure 7 shows a screenshot of the survey shown
to our participants.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:4 • Changyang Li and Lap-Fai Yu

Table 2. Statistical results of participants’ ratings for each of the 10 generated activity snippets on the four metrics. For each activity snippet, Each metric is
computed using 300 ratings based on a 5-point Likert scale (1 meaning "the lowest" and 5 meaning "the highest").

Snippet No. 1 2 3 4 5 6 7 8 9 10

Reasonableness
Mean 3.77 3.82 3.90 3.87 3.91 3.88 3.93 3.96 3.81 4.00
Median 4 4 4 4 4 4 4 4 4 4
Standard Deviation 0.93 0.96 0.93 0.94 0.89 0.90 0.85 0.93 0.94 0.89

Intuitiveness
Mean 3.64 3.64 3.76 3.68 3.80 3.75 3.94 3.91 3.73 3.84
Median 4 4 4 4 4 4 4 4 4 4
Standard Deviation 0.88 0.95 0.89 0.88 0.89 0.92 0.86 0.92 0.92 0.90

Placement plausibility
Mean 3.84 3.80 3.87 3.87 3.89 3.88 3.98 3.93 3.83 3.97
Median 4 4 4 4 4 4 4 4 4 4
Standard Deviation 0.80 0.95 0.86 0.87 0.94 0.85 0.80 0.89 0.94 0.90

Overall plausibility
Mean 3.76 3.81 3.86 3.80 3.97 3.93 3.96 3.92 3.90 3.82
Median 4 4 4 4 4 4 4 4 4 4
Standard Deviation 0.97 0.95 0.92 0.93 0.83 0.90 0.85 0.89 0.89 0.89

Fig. 3. Details of keyframe descriptions of the “take orders” activity shown in Figure 1 of the main paper.

Fig. 4. Substituting objects in the "serve food" activity (Figure 8 in our main paper) with ones with the same semantic labels but different geometries.

Fig. 5. A "clean up table" activity following the "serve food" activity shown in Figure 8 of our main paper.
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Fig. 6. Four additional generated activity snippets. Selected keyframes are presented.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:6 • Changyang Li and Lap-Fai Yu

Fig. 7. A screenshot of the survey shown to participants in our user study.
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