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Fig. 1. Our approach generates an activity snippet referring to a sequence of high-level keyframe descriptions of multi-character, multi-object interactions
represented as graphs, based on which our approach automatically instantiates virtual characters and objects in a 3D environment to illustrate an activity.
This example shows a generated activity snippet of a waiter taking orders from two customers in a restaurant.

We present an approach to generate virtual activity snippets, which comprise
sequenced keyframes of multi-character, multi-object interaction scenarios
in 3D environments, by learning from recordings of human-scene inter-
actions. The generation consists of two stages. First, we use a sequential
deep graph generative model with a temporal module to iteratively generate
keyframe descriptions, which represent abstract interactions using graphs,
while preserving spatial-temporal relations through the activities. Second,
we devise an optimization framework to instantiate the activity snippets in
virtual 3D environments guided by the generated keyframe descriptions. Our
approach optimizes the poses of character and object instances encoded by
the graph nodes to satisfy the relations and constraints encoded by the graph
edges. The instantiation process includes a coarse 2D optimization followed
by a fine 3D optimization to effectively explore the complex solution space
for placing and posing the instances. Through experiments and a perceptual
study, we applied our approach to generate plausible activity snippets under
different settings.
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1 INTRODUCTION
Generating virtual environments and compatible human behaviors
is useful for diverse tasks in computer graphics, computer vision
and robotics. With the availability of large-scale datasets, deep gen-
erative methods have become popular for learning from real-world
recordings and generating novel samples.

The recent trends of 3D animation, simulation, and VR/AR appli-
cations such as the metaverse show a substantial demand for gen-
erating plausible virtual activities pertaining to virtual characters’
and objects’ placements and the interactions among them [Hassan
et al. 2021b; Zhang et al. 2020c,a]. Existing methods may support
posing single or multiple virtual humans in a given virtual envi-
ronment, but are not guided by high-level contexts such as what
activities the virtual humans perform. Some other works synthesize
motions [Hassan et al. 2021a; Starke et al. 2019; Wang et al. 2021a,b],
which are usually correlated with specific activity labels. However,
most prior works consider a single virtual human’s interactions
with a static scene only.

In this paper, we study a relevant problem of generating a se-
quence of complexmulti-character, multi-object interactions, consid-
ering the tangled spatial-temporal and interactive relations. Our goal
is to generate virtual activity snippets, which depict sequenced
multi-character, multi-object interaction scenarios in virtual 3D en-
vironments, by learning from real human-scene interaction record-
ings. Figure 1 shows an example of a "take orders" activity snippet
in a restaurant, which contains four keyframes. In this example,
two customers hold their menus and sit by a table, and a waiter
jots down their orders and leaves the scene. The graphs, dubbed as
keyframe descriptions, encode abstract interactive contexts in
the scene. Nodes and edges in a keyframe description are associated
with certain categories to help represent the activity. Such abstract
interactions are eventually instantiated into 3D environments.

In comparison to prior works that study how to use data-driven
models to generate detailed human poses or motions (i.e. kinematic
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parameters of body parts and joints), our work focuses on the high-
level planning of symbolic interactions (e.g., a character sits on a
chair and talks to someone) in a deep generative manner, and then
assigns appropriate 3D poses to characters and objects accordingly.
Specifically, we use a sequential graph generative model to capture
the transitions of interactions between adjacent keyframe descrip-
tions, guided by learned temporal relations using a temporal module.
Our approach can then generate a keyframe description sequence,
which incorporates abstract interactions in an activity snippet, by
repeatedly triggering the keyframe description generator. The tem-
poral module also decides when the generation should appropriately
terminate for a scenario. In order to instantiate activity snippets
from high-level abstractions to concrete 3D placements, we devise
an optimization framework, which consists of a coarse 2D opti-
mization with a progression schema and a fine 3D optimization, to
effectively explore the complex solution space comprising a varying
number of constraints derived from edges in keyframe descriptions.
Our approach can be applied for compelling use cases. For ex-

ample, it can be applied to generate novel non-player character
(NPC) behaviors in dynamic virtual environments using learned
human-scene interactions instead of hand-crafted rules or behavior
trees. It may also be used to predict appropriate NPC behaviors
in response to players’ behaviors. Our approach can help create
faithful social scenarios in the metaverse; and in turn, complex
multi-character, multi-object interactions recorded from real users
in 3D metaverse environments will facilitate the training of our
approach for generating more plausible activities.
In summary, our contributions include:

• Introducing the novel concept of activity snippets to represent
sequential multi-character, multi-object interactions in 3D
virtual environments.

• Proposing a sequential deep graph generative model to gen-
erate keyframe descriptions to depict an activity, guided
by spatial-temporal and interactive relations learned from
human-scene interactions.

• Devising a two-stage optimization framework to realize keyframe
descriptions as 3D instance placements while considering a
variety of constraints among characters and objects in the
scene.

2 RELATED WORK

2.1 Realizing Human Behaviors in 3D Environments
Generating scene-aware virtual human behaviors is a long-standing
problem in graphics and vision. A representative problem is gener-
ating virtual human poses adaptively in input scenes. For example,
Kim et al. [2014] predict poses by analyzing the correlations between
contact points and geometric features of shapes. Savva et al. model
correlations between geometries and functionalities of 3D environ-
ments [Savva et al. 2014], and correlations between human poses
and object arrangements [Savva et al. 2016], using observations of
from human-scene interactions. Recent advances in deep learning
techniques and the increasing availability of 3D data stimulate re-
search on posing virtual humans considering geometries, semantics,
affordances, and contacts [Hassan et al. 2021b; Zhang et al. 2020c,a]
using deep generative models.

In addition to generating static poses, scene-aware human motion
generation should cope with temporal relations and interactions
between humans and scenes, and should be guided by tasks in spe-
cific scenarios. For high-level planning of motion, Lee et al. [2006]
use building blocks to allow navigation of animated characters. Bai
et al. [2012] generate manipulation sequences by traversing ma-
nipulation graphs. Agrawal et al. [2016] use task-specific foot-step
plans as motion templates. Pirk et al. [2017] present interaction
landscapes as functional descriptors for proximal interactions. Lee
et al. [2022] present a framework to create physically compliant in-
teractions with surroundings for humanoids. Recent learning-based
methods address the problem of generating motions as sequences
of parameterized human poses [Cao et al. 2020], and may further
be conditioned on surrounding environments [Hassan et al. 2021a;
Starke et al. 2019; Wang et al. 2021a,b], action labels [Guo et al.
2020; Petrovich et al. 2021], or textual descriptions [Athanasiou
et al. 2022; Ghosh et al. 2021; Wang et al. 2022]. Script-based anima-
tion may find applications in gaming and storytelling. For example,
Text2SceneVR [Abrami et al. 2020] is a system that allows users
to create VR scenes using hypertexts. Zhang et al. [2021] convert
scripts as semantic scene graphs for creating animations. ASAP [Kim
et al. 2021] parses scripts into descriptions of actions, characters
and dialogues for animation synthesis. Nawmal [Nawmal 2019] is
a commercial tool for text-based animation/scene creation. Some
recent works also investigate how to accommodate virtual humans
in real environments for augmented reality applications [Li et al.
2022; Tahara et al. 2020].
Our work focuses on high-level symbolic planning of dynamic

multi-character multi-object activities in temporal keyframes, and
optimizes the poses of characters and objects guided by abstract
activity graph descriptions generated by a deep graph generative
model. Related to our problem, PiGraphs [Savva et al. 2016] focuses
on detailed stickman poses considering spatial relationships but not
temporal interactions. Wang et al. [2019b] investigate synthesizing
animation sequences of interactions between a single human-hand
and multiple foreground objects, assuming the number of objects is
unchanged.

While a large portion of works realizes human behaviors in cap-
tured real-world environments, a related topic is synthesizing virtual
layouts for human activities or character animations. Early solu-
tions include optimizing cost functions derived from interior design
principles [Merrell et al. 2011; Yu et al. 2011], and learning statistical
models or graph models for modeling layout patterns [Fisher et al.
2012; Fu et al. 2017]. More recently, learning-based approaches are
devised based on large-scale 3D scene datasets for layout synthe-
sis [Hu et al. 2020; Sun et al. 2022; Wang et al. 2019a, 2018; Zhang
et al. 2020b]. On the other hand, human behaviors can also guide
3D scene synthesis [Fisher et al. 2015; Ma et al. 2016; Ye et al. 2022].
In our work, we synthesize poses of both characters and objects in
all keyframes jointly using an optimization framework.

2.2 Complex Human Activity Datasets
A large number of human activity datasets are available to sup-
port various activity-related tasks. For example, datasets like Ac-
tivityNet [Caba Heilbron et al. 2015], THUMOS [Idrees et al. 2017],

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



Generating Activity Snippets by Learning Human-Scene Interactions • 1:3

FineGym [Shao et al. 2020] and AVA-Kinetics [Li et al. 2020] fa-
cilitate action recognition research, which refers to identifying
events performed by humans. Action Genome [Ji et al. 2020] repre-
sents human-object relationships as spatial-temporal scene graphs.
LEMMA [Jia et al. 2020] contains recordings of complex multi-agent,
multi-task human activities with atomic action labels. Recently,
Luo et al. present MOMA [Luo et al. 2021] for activity parsing and
MOMA-LRG [Luo et al. 2022] as a follow-up work to incorporate nat-
ural language descriptions. In our work, we utilize the MOMA [Luo
et al. 2021] dataset, which contains the annotations of multi-object
multi-actor activities encoded by hypergraphs, to learn complex
human-scene interactions for generating novel activity snippets.

2.3 Deep Generative Models of Graphs
According to a recent survey [Guo and Zhao 2022], deep graph
generation methods, including conditioned or unconditioned gen-
erations, can be broadly categorized as: (1) one-shot generation
methods, which generate graphs by sampling from the probabilistic
distribution of graph latent space in one step, such as GraphVAE [Si-
monovsky and Komodakis 2018] and JT-VAE [Jin et al. 2018]; and (2)
sequential generation methods, which generate a graph by making
sequential decisions of adding nodes and edges, conditioning on the
sub-graphs already generated, such as DGMG [Li et al. 2018] and
GraphRNN [You et al. 2018]. Since our approach repeatedly creates
a new graph for the next frame conditioned on the graph of the pre-
vious frame, graph modifications are frequently required and thus
sequential generation fits our case well. We employ a sequential
generative model based on DGMG [Li et al. 2018] and incorporate
node deletion and edge deletion functions to tackle the problem of
activity snippet description generation discussed in Section 4.1.

3 OVERVIEW
Our approach synthesizes a virtual activity snippet by first generat-
ing a sequence of keyframe descriptions, which depict high-level
interactions in a scenewithmultiple characters and objects, and then
instantiating the 3D placements through optimizations. Figure 2
shows an overview of our approach.

Generation of Keyframe Descriptions. Given an activity label, our
keyframe description generator repeatedly generates new keyframe
descriptions, represented by graphs and conditioned on their pre-
decessors. In the end, a sequence of keyframe descriptions that
incorporate dynamic interactions is formed to satisfy the desired ac-
tivity (Section 5). As shown in the upper part of Figure 2, a keyframe
description at frame 𝑘 , together with an up-to-date temporal signal
produced by a recurrent model (LSTM in our implementation), are
passed to the generator for generating a new description for frame
𝑘 + 1. The keyframe description generator is implemented as a se-
quential generative model, which utilizes message-passing graph
convolution to learn abstract relationships encoded in graphs.

Activity Snippet Instantiation. The generated keyframe descrip-
tions in the activity snippet are used to guide an instantiation model
to synthesize plausible 3D instance placements (Section 6). Specif-
ically, nodes in keyframe descriptions are instances in the 3D en-
vironment, and their poses should be constrained by relationships

Fig. 2. An overview of our approach. A sequence of keyframe descriptions
{𝐺𝑘 } is generated by repeatedly producing new keyframe descriptions
conditioned on their predecessors, considering spatial-temporal relations. A
recurrent temporal function 𝑓temp, an LSTM in our implementation, takes in
the graph summary h𝑘

𝐺
and outputs a generation signal s𝑘+1. A termination

function 𝑓termin, an MLP in our implementation, decides whether to end
the iterative generation. In the next step, an activity snippet instantiation
model, based on an optimization framework, synthesizes placements of
instances encoded by the keyframe descriptions as a sequence of 3D scenes.

encoded by the edges throughout the interactions among instances.
We use an optimization framework to refine the 3D instance place-
ments subject to the constraints.

4 ACTIVITY SNIPPET REPRESENTATION
We represent an activity snippet as a sequence of keyframes to-
gether with their descriptions. In our work, a keyframe not only
refers to a moment in the snippet, but also encodes 3D placements
of instances (including characters and objects) at that moment. For-
mally, an activity snippet comprising 𝑇 keyframes is defined as
Γ = {(𝐺𝑘 ,Φ𝑘 )}𝑘=1,2,...,𝑇 , where𝐺𝑘 is the keyframe description of
the 𝑘-th keyframe and is represented as a graph. Φ𝑘 is a set of para-
metric 3D poses of instances in the scene of the 𝑘-th keyframe. As
an illustrative example, Figure 3 shows some keyframe descriptions
of an activity snippet.

4.1 Representing Frame Descriptions as Graphs
To describe abstract interaction relationships in a scenario with
multiple characters and objects, we represent a keyframe description
as graph 𝐺𝑘 =< 𝑉𝑘 , 𝐸𝑘 > containing a vertex set 𝑉𝑘 and an edge
set 𝐸𝑘 . Graphs are general, informative, and flexible for modeling
diverse interactive schemes. A set of node categories (encoding
characters and objects) and edge categories (encoding interaction
relations and self-statuses) are used for keyframe descriptions.

Node Features. The set of node categories isN = {𝑛} = Nch∪Nobj
, where Nch and Nobj denote the sets of character categories (blue
nodes in Figure 3) and object categories (red nodes in Figure 3),
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Fig. 3. A generated "serve wine" activity snippet. 3D placements of instances (characters and objects) and their animation assignments are guided by
interactions encoded by edges in the keyframe descriptions. Blue nodes denote characters. Red nodes denote objects. Edge colors indicate edge categories.

respectively. A node 𝑣 is associated with its category embedding
vector x𝑣 .

Edge Features. We define the set of edge categories Eedge = {𝑒} =
Eia ∪ Eria ∪ Eself. An edge 𝑒 is associated with its category em-
bedding x𝑒 . Eia stands for interaction edges, which may further
be categorized into three sub-types (position-based, rotation-based,
and attachment) according to the constraint types (Section 6.1) in
our optimization framework, as shown in Figure 3. Note that while
generic edge categories are defined as directed, we define their re-
verse categories to support undirected graphs for message-passing
on graphs [Gilmer et al. 2017]. For example, if a node𝑢 has a directed
look at edge (𝑢, 𝑣) pointing to node 𝑣 , we automatically add a sym-
metric edge (𝑣,𝑢) with a reverse feature, which could be interpreted
as being looked at. Therefore, Eia includes directed interaction edge
categories, and Eria includes the reverse categories, and a bijection
function 𝑓ia : Eia → Eria pairs the two sets. Besides, the edge cat-
egories in Eself describe possible self statuses (e.g., a character is
walking), which can only be assigned to a self edge (𝑣, 𝑣) that goes
out from and into the same node 𝑣 . Note that as multiple edges of
different categories may exist between the same pair of nodes 𝑢 and
𝑣 (e.g., character 𝑢 may be on the side of while in contact with an
object 𝑣), we merge such edges as a single edge (𝑢, 𝑣) and stack the
edge category embeddings X(𝑢,𝑣) = {x𝑒 } for every original edge 𝑒
from node 𝑢 to node 𝑣 .

4.2 Parameterizing 3D Poses of Instances
In a scenario with multiple characters and objects, we let an in-
stance refer to either a virtual character or an object. An object
is attributed by (𝑝𝑜 , 𝜃𝑜 ), where 𝑝𝑜 is the position and 𝜃𝑜 is its
orientation. Similarly, a character is attributed by (𝑝𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ),
where 𝑝𝑐 is the character’s position, 𝜃𝑐𝑏 is the body orientation,
and 𝜃𝑐ℎ is the head orientation relative to 𝜃𝑐𝑏 as shown in Fig-
ure 3. Therefore, the 𝑘-th keyframe’s instances are parameterized
as Φ𝑘 =

{
{(𝑝𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ)}, {(𝑝𝑜 , 𝜃𝑜 )}

}
.

5 GENERATING KEYFRAME DESCRIPTIONS
Our approach generates keyframe descriptions as graphs to depict a
sequence of dynamic interaction scenarios. Particularly, a keyframe
description𝐺𝑘 should be conditioned on its predecessor𝐺𝑘−1 in the
sequence to maintain temporal relations. In addition, we also expect
our generative model to be conditioned on particular activity labels,
so that users may specify their desired activity types and our model
can generate corresponding keyframe descriptions. For example, for
a restaurant scene, a snippet could be generated to show the activity
of "taking a food order" or "serving customers while they dine".
While the generated graphs should describe frames at discrete

time points, they also should preserve some continuity such that
changes between adjacent keyframe descriptions are gradual and
smooth. We thus devise a generative model based on DGMG [Li
et al. 2018], which is a sequential generative method. DGMG has
been successfully applied in other graphics tasks like layout synthe-
sis [Wang et al. 2019a]. To construct a graph sequentially, it makes
the following decisions iteratively: (1) Should a new node be added
to the graph? (2) If a new node is added, should an edge be added to
connect this new node to an existing node? (3) If a new edge is added,
which existing node in the graph should the edge be connected to?

This generative framework, however, is only able to continuously
add nodes and edges to the graph. In order to support generating
sequenced keyframe descriptions, we expect our generative model
to be able to delete existing nodes and edges as well: if such general
modifications including deletions in existing graphs are allowed, a
keyframe description 𝐺𝑘 can be generated by using 𝐺𝑘−1 as a base
and applying modifications. For example, if two characters chat in a
keyframe, they may end the conversation (as indicated by deleting
the edge representing the "talk" relationship), and a character may
leave the scene (as indicated by deleting the node representing the
character), at a subsequent keyframe.

The following section describes the basic background of message-
passing graph convolution and details of the modification actions.
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Fig. 4. The workflow of the keyframe description generator. Starting from an input keyframe description𝐺𝑘 , it triggers four modules sequentially to delete
nodes, delete edges, add nodes, and add edges, and finally produces the next keyframe description𝐺𝑘+1 conditioned on𝐺𝑘 . In this example, nodes 𝑎 and 𝑏
refer to two customers. Nodes 𝑤, 𝑡 , and 𝑝 refer to a waiter, a table, and a plate, respectively.

5.1 Message Propagation on Graphs
During message propagation, each node receives messages from
its neighbors. The received messages are aggregated and used to
update the node feature. The aggregated message a𝑣 for node 𝑣 is:

a𝑣 =
∑︁
(𝑢,𝑣)

𝑓msg (h𝑢 ,h𝑣,h(𝑢,𝑣) ). (1)

Here, 𝑓msg computes the message vector from a neighbor 𝑢 to
node 𝑣 . h𝑢 and h𝑣 are latent node features of node 𝑢 and node 𝑣 .
Since multiple edges of different categories may exist from node 𝑢
to node 𝑣 , h(𝑢,𝑣) is an aggregated edge feature given the stacked
edge category embeddings X𝑢,𝑣 :

h(𝑢,𝑣) = aggr𝑒 (X𝑢,𝑣) =
∑︁

x𝑒 ∈X𝑢,𝑣

𝜎 (𝑔𝑒 (x𝑒 )) ⊙ 𝑓𝑒 (x𝑒 ), (2)

where 𝑔𝑒 is a function that maps an edge embedding vector x𝑒 to
an "importance" value, activated by a logistic sigmoid function 𝜎 .
𝑓𝑒 is an edge feature function. As a result, the aggregation function
aggr𝑒 outputs a weighted sum of edge features.

With the aggregated message a𝑣 from neighbors and the current
node feature h𝑣 , the updated feature h′𝑣 is computed by a node
feature function 𝑓𝑛 such that h′𝑣 = 𝑓𝑛 (a𝑣,h𝑣).

5.2 Generating the Next Keyframe Description
In the generation process, picking one candidate out of a varying
number of candidates is often needed (e.g., deleting a node, adding
an edge between a pair of nodes). We use a scaled dot-product
attention operator [Vaswani et al. 2017] for candidate selection. The
probability 𝑝k of selecting the candidate associated with key k is:

𝑝k = att(q,k) = softmaxk (
1
√
𝑑
(qWq) (kWk)𝑇 ), (3)

where Wq and Wk are learnable matrices that project the query q
and the key k into 𝑑-dimensional spaces. In our implementation, all
modules that need the attention operator consider different keys
but the same query h∗

𝐺
, which is an augmented graph summary:

h∗𝐺 = [h𝐺 , s],where h𝐺 = aggr𝐺 ({h𝑣}) . (4)
This definition is based on two factors that we want to include

in order to guide the graph modification: (1) the original graph
summary h𝐺 , which represents the up-to-date overall interaction
relations encoded by the current graph 𝐺 and is read out using an
aggregation function aggr𝐺 same as Equation 2 but with its own

parameters; and (2) the generation signal s that encodes the temporal
history of the graph sequence, of which details are discussed later
in Section 5.3. Based on these notations, we introduce the following
four modules, as depicted in Figure 4, to generate the next keyframe
description:

(1) Delete nodes. A critical need in our task is to delete nodes. For
example, a waiter may take away empty plates that appear in pre-
vious frames. All associated edges are also removed when delet-
ing a node. The probability of deleting node 𝑣 is attdn (h∗𝐺 ,h𝑣)
considering the node feature h𝑣 as the key.

(2) Delete edges. Akin to the delete node module, interactions may
change in a sequence of frames thus our approach needs to be
able to delete edges. In this module, the probability of deleting
the edge category 𝑒 in edge (𝑢, 𝑣) considers the pairwise node fea-
tures together with the edge category feature, and is computed
as attde (h∗𝐺 , [h𝑢 ,h𝑣, x𝑒 ]). When computing such probabilities,
reverse edge categories 𝑒 ∈ Eria are not considered. Instead, if a
non-self-edge (𝑢, 𝑣, 𝑒) is deleted, its reverse edge (𝑣,𝑢, 𝑓ia (𝑒)) is
also deleted from the graph.

(3) Add nodes. Since the node category is the only factor to con-
sider when trying to add a node, this module does not need an
attention operator to handle a varying number of candidates.
Instead, the probability of adding a node of a certain category is
obtained from softmax(𝑓an (h∗𝐺 )), where 𝑓an is a function that
outputs logits associated with all node categories. Once a new
node 𝑢 is added, its node feature h𝑢 is initialized through a func-
tion 𝑓init such that h𝑢 = 𝑓init (x𝑢 ,h∗𝐺 ), where x𝑢 is the category
embedding of node 𝑢.

(4) Add edges. Considering all possible combinations of pairwise
directed edges and edge categories, the probability of adding
an edge of category 𝑒 from node 𝑢 to node 𝑣 is computed as
attae (h∗𝐺 , [h𝑢 ,h𝑣, x𝑒 ]). Reverse edges are excluded. The edge
category is restricted such that 𝑒 ∈ Eself when trying to add a
self-edge, and otherwise 𝑒 ∈ Eia. Once a non-self-edge (𝑢, 𝑣, 𝑒)
is added, its reverse edge (𝑣,𝑢, 𝑓ia (𝑒)) is added simultaneously.
Note that in case the number of keys (i.e. combinations of edge
source, destination, and category) is too large, the attention op-
erator’s performance will likely decrease. A substitute method
to pick candidate keys is to compute log probabilities for adding
each possible edge-feature combination (𝑣,𝑢, 𝑒) through a func-
tion (e.g., MLP), concatenate them into one distribution, and
sample from it, as suggested in [Wang et al. 2019a].
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Overall, a single round of keyframe description generation trig-
gers the modules following the order listed above. Each module
runs repeatedly until it decides to stop, and then the process moves
on to the next module. Figure 4 shows the overall workflow. This
order follows the logic that unneeded nodes/edges should first be
removed (since deleting nodes removes related edges, deletion goes
first), before new content is added (new edges could be associated
with new nodes, so it starts by adding nodes). In a module that
uses the attention operator, an empty feature is used for calculating
the probability of "STOP", which indicates that this module should
terminate and the next module should start. In the Add node module
that outputs logits of a fixed shape corresponding to node categories,
an additional "STOP" category is included.

5.3 Preserving Temporal Relations in the Sequence
In order to generate a sequence of keyframe descriptions, a temporal
module is applied to preserve temporal relations and to further guide
the generative model to produce subsequent keyframe descriptions.
We use the following temporal function 𝑓temp:

s𝑘+1 = 𝑓temp (𝑓t (h𝑘𝐺 , c), s
𝑘 ), (5)

where c is a highest-level condition vector that encodes the target
activity, and the function 𝑓t combines the graph summary h𝑘

𝐺
for

keyframe 𝑘 with c. Note that at the initial keyframe, s0 is a random
vector. During training and normal inference, the initial keyframe
description 𝐺0 is an empty graph and the generation process only
needs to call the add nodes and add edges modules to generate 𝐺1.
However, 𝐺0 can also be provided as a specific initialization or set
as a partial graph during the inference if needed. We demonstrate a
possible application scenario of this feature for experiencing activity
snippets in mixed reality in Section 7.4.

Following this step, whether the graph sequence generation should
continue is judged by another function 𝑓termin (s𝑘+1). If the genera-
tion does not terminate, s𝑘+1 is a new generation signal vector used
for guiding the next graph generation at frame 𝑘 + 1. As a result, a
sequence of keyframe descriptions can be generated iteratively.

5.4 Dataset
We train the keyframe description generator using data from the
MOMA [Luo et al. 2021] dataset. Annotations are represented using
hypergraphs, which depict multi-object, multi-character activities
and high-level interactions of crowded and complex scenes in video
clips. For each video clip, a sequence of keyframes is picked and
annotated along the timeline. MOMA uses different labels for node
categories (e.g., character “waiter”, object “menu”), and edge cate-
gories (e.g., dynamic relationship “talk to”, static relationship “next
to”). Clips are epitomized using activity labels (e.g., “serve food”).
While those annotations are originally attributed with bounding
boxes of characters and objects in the video, we only use the abstract
graphs in our work, and thus exclude redundant graphs in a subse-
quence if they share the same structure. An additional modification
of the data is that we add affiliation relationships to the original
graphs if needed. For example, in a dining activity, if a waiter deliv-
ers a plate to a customer, by parsing the original graph we may only
know that the plate is placed somewhere on the table, but which

customer the plate is delivered to is unclear. In this example, we
add an edge belong between the plate and its affiliated customer by
checking the positions of their bounding boxes in the video.

To support the sequential generativemodel, orders of graph gener-
ation are needed. To complete the same target graph generation, one
possible order may refer to adding some nodes first, while another
order may prioritize adding some other nodes. For example, if a cup
and a dish are to appear in the next keyframe, adding whichever
first leads to the same new scene, and advancements of higher-level
activities are unaffected. We chose random ordering in our imple-
mentation. In contrast to DGMG [Li et al. 2018] which only cares
about the order of creating a single graph as the outcome, our model
is expected to also continuously capture orders of changes between
graphs in adjacent frames because we want to use the synthesized
sequence of graphs for generating an activity snippet animation. To
create a random order of transition from the keyframe description
𝐺𝑘 to𝐺𝑘+1, we compare and record the sets of deleted nodes, deleted
edges, added nodes, and added edges, randomly shuffle all sets, and
then merge them together to form a valid transition order.

5.5 Implementation Details
We used 𝑇 = 3 rounds of message propagation. We used neural
networks for functions during the graph generation. Specifically, we
used (1) linear layer for functions𝑔𝑒 and 𝑓𝑒 ; (2) multilayer perceptron
(MLP) for functions 𝑓msg, 𝑓an, 𝑓init, 𝑓𝑡 and 𝑓termin; (3) gated recurrent
unit (GRU) for the node feature function 𝑓𝑛 ; and (4) long short-term
memory (LSTM) for the temporal function 𝑓temp. The training of
the sequential generative model was consistent with the original
DGMG [Li et al. 2018].

6 INSTANTIATING ACTIVITY SNIPPETS IN 3D SCENES
Given generated keyframe descriptions that only encode abstract
interactions among instances (characters and objects), the following
challenge is to instantiate activity snippets by posing and animating
characters and objects accordingly, considering spatial relations in
each keyframe and temporal relations throughout the whole activity
snippet. We propose an optimization-based approach, which con-
siders pairwise node constraints converted from edges in keyframe
descriptions, to synthesize plausible 3D placements of instances at
the keyframes. Pre-defined symbolic animations are later assigned to
instances with optimized poses, and intermediate animation states
are interpolated during transitions between keyframes.

6.1 Converting Edges into Pairwise Constraints
We model interactions encoded by the edges of keyframe descrip-
tions as soft constraints, and formulate such constraints as cost
functions used for optimization. Each cost function 𝐸 (𝑢, 𝑣) measures
the quality of posing a pair of nodes 𝑢 and 𝑣 to satisfy the corre-
sponding edge category. Note that self-edges defined in our work
depict nodes’ statuses. Thus they are used for creating symbolic
animations without considering instances’ positions and orienta-
tions, and they are not incorporated into the optimization. Note also
that reverse edges are only used for message passing during the
keyframe description generation in Section 5, and we only consider
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directed edges during the activity snippet instantiation. Generally,
we categorize the constraints into three types:

6.1.1 Position-based Constraints. Denoted by {𝐶p}, these constraints
encode spatial relations between nodes. For example, if 𝑢 is on the
side of 𝑣 , 𝑢 should be close enough to 𝑣 such that the distance be-
tween them is shorter than a threshold. The general definition of a
position-based constraint between instances 𝑢 and 𝑣 is:

𝐶p (𝑢, 𝑣) = max
(
1 − 𝑒𝜆𝐷−𝑑 (𝑢,𝑣) , 0

)
(6)

where 𝑑 (𝑢, 𝑣) is a distance function between 𝑢 and 𝑣 , which can
be flexibly defined for specific constraints and the applied environ-
ments. 𝐷 is a specified target distance. 𝜆 ≥ 1 is a relaxation factor
that allows temporarily tolerating a larger target distance and is
controlled by the optimization solver described in Section 6.2.1.
We describe details of the distance function 𝑑 (𝑢, 𝑣) and target

distance 𝐷 for some most common position-based constraints. We
include some additional definitions in our supplementary material.
• On the side of. Though the specification of 𝐷 often depends on
the geometries, we set 𝐷 = 0.4m by default. If 𝑢 and 𝑣 are both
characters or item objects (i.e. movable and graspable), the dis-
tance is easily defined as 𝑑 (𝑢, 𝑣) = |𝑝𝑢 − 𝑝𝑣 |. However, a more
common case in our work is that a character 𝑢 is on the side of a
furniture object 𝑣 . In this case, a nearest point 𝑝∗𝑢𝑣 is found on the
boundary of 𝑣 , and the distance is 𝑑 (𝑢, 𝑣) = |𝑝𝑢 −𝑝∗𝑣 |, as indicated
by the yellow line segment in Figure 5. In some special cases,
characters’ roles and objects’ functionalities would bring out ad-
ditional considerations for defining the distance. For example, in
the "front desk reception" example in Figure 8, when computing
the customer’s and the waiter’s distances to the desk, the nearest
point 𝑝∗𝑣 is only calculated on the boundary at the desk’s front
surface. On the contrary, the nearest point is found at the desk’s
back surface for the receptionist.

• In contact with. If 𝑢 is in contact with 𝑣 , 𝑣 should ideally be reach-
able from 𝑢 and we set target distance 𝐷 = 0.3m by default. We
also apply the same setting for the edge belong, thus if an object
belongs to a character, the object is expected to be reachable.
The distance is usually computed as 𝑑 (𝑢, 𝑣) = |𝑝𝑢 − 𝑝𝑣 |. After a
character puts or before the character picks up an item at some
keyframes, an implicit in contact with constraint is added such
that the character should be posed close to where the item is
placed. Variations are allowed if 𝑢 is expected to contact a spe-
cific region of 𝑣 . For example, in the "barber service" example in
Figure 8, barbers may only contact the customers’ heads, thus the
distance is defined as 𝑑 (𝑢, 𝑣) = |𝑝𝑢 − 𝑝head𝑣 |, where 𝑝head𝑣 is 𝑣 ’s
head position.

6.1.2 Orientation-based Constraints. Denoted by {𝐶o}, these con-
straints are about facing directions. For example, if 𝑢 looks at 𝑣 , 𝑢
should face towards 𝑣 . The general definition of an orientation-based
constraint between instances 𝑢 and 𝑣 is:

𝐶o (𝑢, 𝑣) =
1 − 𝑠 (𝑢, 𝑣)

2
, (7)

where 𝑠 (𝑢, 𝑣) is an orientation suitability function between 𝑢 and
𝑣 . 𝑠 (𝑢, 𝑣) is generally a dot product between two orientation unit

Fig. 5. An example scene where a character is sitting on the side of a table
and is looking at a laptop. Red vectors fhead𝑐 , f𝑐 and flaptop denote the for-
ward direction of the character’s head, character’s body, and the laptop,
respectively. The yellow line segment indicates the distance between the
character at position 𝑝𝑐 and the nearest position 𝑝∗table on the boundary of
the table. n∗table denotes the normal vector at position 𝑝∗table.

vectors. Specific definitions about what orientation vectors are as-
sociated with 𝑢 and 𝑣 may vary with the constraints and scenes.

When considering the orientation of an instance, we denote the
instance’s forward direction as a unit vector f. If the instance is a
character, since we consider a separate orientation parameter for
the head, we also denote the facing direction as fhead. We provide
definitions of the orientation suitability function 𝑠 (𝑢, 𝑣) for some
common orientation-based constraints, as follows:
• Look at. When a character 𝑢 looks at 𝑣 , we expect that 𝑢 faces
𝑣 directly. Therefore, we encourage 𝑢’s facing direction fhead𝑢 to
align with the vector v𝑢𝑣 =

𝑝𝑣−𝑝𝑢
|𝑝𝑣−𝑝𝑢 | from 𝑢 to 𝑣 , thus 𝑠 (𝑢, 𝑣) =

⟨fhead𝑢 , v𝑢𝑣⟩. In case 𝑣 is an object with certain functionalities
(e.g., a character looks at a laptop as shown in Figure 5), an auxil-
iary orientation-based constraint is simultaneously applied with
𝑠 (𝑣,𝑢) = ⟨f𝑣, v𝑣𝑢⟩ to constrain object 𝑣 to face𝑢 as well. The same
definition is also set for the constraint talk to.

• On the side of. While a position-based constraint is defined for
this edge label, we additionally constrain instance 𝑢’s orientation
when it is on the side of a furniture object 𝑣 . Recall that the
nearest point 𝑝∗𝑣 is found at the boundary of 𝑣 , we denote the
normal vector at 𝑝∗𝑣 as n∗𝑣 , as illustrated by the blue vector in
Figure 5 which shows a character facing a table. To encourage
𝑢’s body direction f𝑢 to align with the inverse of n∗𝑣 , we set
𝑠 (𝑢, 𝑣) = ⟨f𝑢 ,−n∗𝑣⟩.

• To create more plausible activity snippets, other intuitive consid-
erations are also encoded as orientation-based constraints though
they do not appear in the keyframe descriptions. For example, if
a character 𝑢 sits on a chair 𝑣 such that an attachment relation
exists, 𝑢’s and 𝑣 ’s forward directions should align with each other,
and thus 𝑠 (𝑢, 𝑣) = ⟨f𝑢 , f𝑣⟩ is used.

6.1.3 Attachment Constraints. Most of these are hard constraints
applied to enforce that the attached child instance’s position is
always consistent with its parent instance throughout the optimiza-
tion. Common examples include sit on, hold, etc. In practice, we com-
bine such attachment hierarchies as single instances throughout the
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Fig. 6. Our approach instantiates activity snippets in 3D environments by a
two-stage optimization. (a) A coarse optimization is performed in 2D space,
whose results are projected back to the 3D environment as the initialization
for (b) a fine optimization in 3D space.

coarse 2D optimization (Section 6.2.1). In the fine 3D optimization
(Section 6.2.2), the attached instance is free to change its orientation.
An exception of enforcing a child’s position to be consistent with
its parent’s position is above, which allows the child object to move
freely on the top surface of the parent furniture object.

6.2 Optimizing Instance Placements
In preliminary tests, we observed that optimizing the placements
of all instances in a whole activity snippet using the generated
keyframe description sequence is challenging, considering the tan-
gled spatial constraints within frames and cross-frame temporal
constraints. In particular, since the graph dimensionalities (i.e. num-
ber of nodes and edges) of keyframe descriptions are variable, the
optimization becomes more difficult as the number of edge-based
constraints increases.
We therefore devise a two-stage optimization process as shown

in Figure 6: (1) In a coarse 2D optimization, we first project the 3D
scene onto a 2D space, and optimize the 2D placements by only
considering position-based constraints. Starting from a random
initialization, we first relax all applied constraints and progressively
tighten them throughout the optimization process. (2) In a fine 3D
optimization, we retrieve the 3D poses of instances from the 2D
optimization result and use them as the initialization for another
round of 3D placement optimization.
In both stages, we employ a consistent optimization solver: we

use simulated annealing [Kirkpatrick et al. 1983] with a Metropolis-
Hastings state-search step [Hastings 1970; Metropolis et al. 1953]
to explore the complex spatial-temporal solution space. Given an
activity snippet Γ, a Boltzmann-like objective function is defined as:

𝑓 (Γ) = 𝑒−
1
𝑡
𝐶 (Γ) , (8)

where 𝐶 (Γ) denotes the constraints considered in the activity snip-
pet Γ. 𝑡 is the temperature parameter that drops over iterations by a
decay factor until it reaches a low value near zero. In each iteration,
based on the current activity snippet Γ, a tentative instantiation Γ′

is proposed, which is accepted with a probability:

𝛼 (Γ′ |Γ) = min
[
𝑓 (Γ′)
𝑓 (Γ) , 1

]
= min

[
𝑒
1
𝑡
(𝐶 (Γ)−𝐶 (Γ′ ) ) , 1

]
. (9)

In practice, we fix a furniture object (e.g., a table) as the center and
then optimize other instances’ poses around the center object. We
discuss the details of the two optimization stages in the following.

6.2.1 Coarse Optimization in 2D Space. The goal of this stage is to
quickly generate a coarse but reasonable initialization for the fine
optimization in 3D space. Our observation is that position-based
constraints are generally harder to satisfy throughout the optimiza-
tion compared to orientation-based constraints, because coping with
multiple position-based constraints in different frames associated
with the same instance is common yet challenging. Suppose two
customers sit somewhere near a table and later on a waiter comes
to serve them successively. In this example, the waiter’s later move-
ments depend on where the two customers sit, hence the waiter’s
positions in the later frames should be optimized considering the
customers’ positions in the earlier frame, rather than just consider-
ing the local instance distributions in the later frames.

With this consideration in mind, we project instances onto a 2D
space as shown in Figure 6 (a), and use bounding circles to repre-
sent them. Note that hierarchies and attachments are preserved: if
a character sits on a chair, these two instances are merged using
a single bounding circle. On the other hand, if a wine glass is put
on the table, the table’s top surface is its valid moving area and
2D collisions between them are ignored. In case movable objects
appear in the scene but are not associated with any characters or
furniture objects, we implicitly bind them with furniture containing
top surfaces. Those movable objects may jump among multiple top
surfaces during the optimization, and their final positions (i.e. stay-
ing at where of which surface) may depend on other constraints. For
example, the bag in the "front desk reception" example in Figure 8
is placed on the upper surface of the desk but not the lower surface
near the receptionist, because the bag should be accessible to the
customer. We expect that, after the optimization, all instances move
to reasonable positions such that position-based constraints are
roughly satisfied.
Even when the scenario is simplified into 2D, optimizing the

placements from a random initialization is still difficult especially
when the temporal sequence is long. We provide a preliminary study
in our supplementary material, which shows that when dealing with
a long list of constraints, standard simulated annealing may only
satisfy a small portion of them and get stuck at local minimum.

To this end, we propose a progressive optimization with a varying
relaxation degree, which splits the conventional optimization pro-
cess into different sub-optimization phases, and gradually tightens
the constraints. The control of relaxation is achieved by adjusting
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Fig. 7. An example progressive optimization with three sub-optimization
phases, where the relaxation factor 𝜆 drops from 2 to 1. The final placements
of instances in all phases are shown in the columns. The larger 𝜆 is, the
more target distances are relaxed in the position-based constraints, and the
larger move ranges are allowed as depicted by the green circles. Instances’
possible moves during the optimization, as shown by the green arrows, are
sampled within the move ranges.

the factor 𝜆 in Equation 6. Phases are defined along with the tem-
perature decrease (i.e. as the temperature drops below the next
threshold, the optimization transitions to the next phase). Figure 7
shows an example. The initial temperature of a sub-optimization
phase equals the final temperature of the previous phase, such that
the greediness of accepting samples of lower costs increases after
the phase transition.

In the initial phase, the constraints are most relaxed to encourage
quick convergence to a local minimum. Meanwhile, random moves
are sampled using the largest range to allow fast jumps within the
energy landscape. Every time a transition to the next phase occurs,
the constraints are tightened a little bit by decreasing the relax-
ation factor 𝜆 until it equals 1. Essentially, when transitioning to
a new phase, the optimization objective changes and the solver
is transferred to a stricter energy landscape, where the following
optimization is triggered using the optimization result of the previ-
ous phase as the initialization. In our implementation, we set the
decrease of the relaxation factor 𝜆 from 2 to 1 evenly among the
phase transitions by default. The number of phases is typically 2 or
3, but could be flexibly set according to the optimization difficulty,
which depends on the length of the activity snippet and the number
of constraints available.
Since we ignore orientation-based constraints in this stage, we

simplify the solution space by only considering characters’ posi-
tions {𝑝𝑐 } and objects’ positions {𝑝𝑜 }. During the optimization,
a proposed move is made by randomly picking one instance, and
proposing to apply a position change 𝑝 → 𝑝 + 𝜆𝛿𝑝 , as depicted by
the green arrows in Figure 7. Therefore, moves of larger magnitudes
are proposed in early phases when the relaxation factor 𝜆 is larger.

The total cost at this stage is summarized as a weighted sum 𝐶 =∑
𝑤𝑝𝐶𝑝 , where𝑤𝑝 is the weight (set as 1 by default) associated with

each position-based constraint 𝐶𝑝 . The instantiation is optimized
with the solver as discussed at the beginning of Section 6.2.

Note that if an instance’s interactions with the surroundings are
consistent in a few continuous keyframes, we enforce cross-frame
moves for any proposed move applied to that instance. Examples are
highlighted in Figure 6: the cross-frame positions of some instances

are linked by dashed lines, thus an instance’s movements induced
by a proposed move are enforced to be consistent across frames.
For example, if a character is translated in frame 2, that character
should also be translated by the same extent in frame 1 and frame 3.
Moreover, we only compute constraints associatedwith this instance
once in those corresponding frames to save computations. This
strategy is also applied in the 3D optimization stage later.

6.2.2 Fine Optimization in 3D Space. Given the initial placements
produced by the 2D optimization, another finer optimization is trig-
gered in the 3D space as shown in Figure 6 (b). More precise colliders
with respect to the geometries are used to create collision-free ac-
tivity snippets. At this stage, while we assume that instances in
different frames have already been reasonably positioned to satisfy
the position-based constraints, tunings of their positions are still
necessary due to the differences in collider representations. An ex-
ample is that a person’s legs can be accommodated under a table’s
top surface in 3D space when sitting near the table, while such a
scenario would have caused overlapping of their bounding circles
during the 2D optimization.

At this stage, we consider both the position and orientation-based
constraints, and thus optimize all parameters {(𝑝𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ)} of the
characters and all parameters {(𝑝𝑜 , 𝜃𝑜 )} of the objects. During the
optimization, a proposed move is made by randomly picking one
instance, and proposing to apply either a position change 𝑝 → 𝑝+𝛿𝑝
or a rotation change 𝜃 → 𝜃 + 𝛿𝜃 , with probabilities 0.2 and 0.8,
respectively. This is to reduce the number of positional updates
since positions are already near-optimal given the 2D optimization
results. Particularly, if the picked instance is a character, it can either
refer to a body rotation with a probability of 0.7 or a head rotation
with a probability of 0.3 in our implementation.

The total cost at this stage is𝐶 =
∑
𝑤𝑝𝐶𝑝+

∑
𝑤𝑜𝐶𝑜 , where𝑤𝑝 and

𝑤𝑜 are weights (set as 1 by default) for position-based constraints
and orientation-based constraints, respectively. The instantiation is
also optimized with the solver.

7 RESULTS

7.1 Generating and Instantiating Activity Snippets
Figure 8 shows the selected keyframes of four generated activity
snippets conditioned on different activity labels. Our supplementary
material includes four additional results. Our video includes full
animation sequences of all activity snippets.
Overall, the generated keyframe description sequences contain

reasonable abstractions of multi-character, multi-object interactions:
(1) Regarding spatial relations, the graphs are understandable and
contexts in each keyframe are centered around the input activity
labels. Relevant characters and objects (e.g., waitress and plates in
the "serve food", receptionist in the "front desk reception") together
with their interactions (e.g., applying gel in the "barber service",
raising hands in the "presentation") are generated. (2) Regarding
temporal relations, changes in descriptions during the keyframe
transitions are well captured such that the activity advances in a
reasonable order. For example, for the "serve food" activity, the
waitress observes the customers’ needs and delivers food to them
one by one. For the "front desk reception" activity, the waiter guides
the customer to the receptionist and then leaves.
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Fig. 8. Results of four generated activity snippets. Selected keyframes are presented.
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Fig. 9. Constraints are not reasonably shaped when a one-stage optimization is used to instantiate the same "serve food" activity as in Figure 8.

Fig. 10. Another generated activity snippet for the same "serve food" activity label as in Figure 8. Selected keyframes are presented.

Our optimization framework naturally poses the instances to en-
hance the quality of the 3D instantiations. Guided by the constraints
converted from edges, the instances keep reasonable distances from
each other, and interactions shaped by their facing directions also
match the context. In complicated cases where some instances’
placements are associated with constraints in different frames (e.g.,
in the "serve food" activity, where the waitress goes to deliver food
depends on how the customers are posed), our approach finds opti-
mal solutions to accommodate such constraints simultaneously. For
comparison, we use a one-stage optimization that jointly optimizes
all position-based and orientation-based constraints in the 3D space
to create an ablation instantiation in Figure 9, which is of the same
"serve food" activity as in Figure 8. The result suggests that it is
difficult to find optimal activity snippet instantiations at one time,
considering complex spatial-temporal relationships.

Note that different snippets can be generated for a given activity
label. We show another generated "serve food" activity snippet
in Figure 10 in addition to the one in Figure 8.

7.2 Learning from Synthetic Activities
When instantiating an activity snippet in a 3D environment, more
details about the characters and objects in the scene and their inter-
actions would help shape the placements. Since our regular training
data in the MOMA dataset [Luo et al. 2021] is derived from 2D
video clips, critical details about the scene could be missing due to
occlusions or limited fields of view. 3D virtual environments, such
as multiplayer games or the metaverse, can be ideal sources for

collecting comprehensive 3D interaction data to better support the
training of our method.
We conducted an experiment to demonstrate that our approach

can learn from synthetic data created with either general or specific
goals. While it was expensive to collect gaming data by ourselves,
we synthesized training data via a simulation based on the rules and
recipes of the popular multiplayer video game Overcooked [Games
2016]. Refer to our supplementary material for data preparation
details. We synthesized data from the Overcooked’s setting because
kitchens are common and highly functional workspaces: Tasks of
preparing different dishes can typically be represented as a long
sequence of sub-tasks, thus the definitions of cooking activities
align with our problem representation. Our goal is to learn from
synthetic cooking activities and generate realistic activity snippets
about making dishes.
A generated "prepare burger" activity snippet is shown in Fig-

ure 11. In this result, one chef handles the cheese and another chef
cooks the beef, and the generation consists of 19 keyframes. We
compare this with training samples of the same length of keyframes.
The mean graph edit distance (GED) from this generation to the
closest training sample is 0.32. The results suggest that our keyframe
description generation is capable of learning the dynamics behind
such task-oriented activities (e.g., the beef must be chopped before
being cooked in a pan).

7.3 Interactive Activity Snippets Generation
Our approach can be extended to engage a human player in an
activity snippet interactively. The extension involves tracking the
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Fig. 11. A generated "prepare burger" activity snippet. The keyframe description generator was trained using the synthetic overcooked dataset. In the selected
keyframes, chef a processes a block of cheese (object 13) and chef b processes a slice of beef (object 14).

Fig. 12. An interactive "prepare cake" activity snippet. At each keyframe, the player makes an action to propose a local change, which leads to a partial next
keyframe description based on the previous scene state. Following that, our approach generates the next keyframe description by making additional changes
to the other character and objects in the scene.

player’s behaviors, dynamically generating next keyframe descrip-
tions, and instantiating them repeatedly. Specifically, at each keyframe,
our approach advances the activity to the next keyframe as follows:

(1) Wait until the player has taken an action, update the correspond-
ing changes onto the current keyframe description, and create
a partial next keyframe description. Note that to conform to
the sequential graph generation of our approach, such changes
made by the player (not only the character the player controls,
but also the objects involved in the interaction) are also con-
verted into random graph transition orders through the same
procedure discussed in Section 5.4.

(2) Conditioned on the partial next keyframe description, our ap-
proach proposes additional changes until the generation termi-
nates, thus a complete next keyframe description is generated.
During this step, changes in step (1) are fixed.

(3) Update 3D placements of characters (excluding the character
controlled by the player) and objects in the scene by applying
our optimization approach to instantiate the generated next
keyframe description.

We also used the synthetic Overcooked activities in this exper-
iment to create collaborative activities snippets. Figure 12 shows
an example of a "prepare cake" activity snippet. To illustrate this
feature, we developed a simple interactive interface that enabled a
player to use the keyboard to move the character and the mouse to
make symbolic actions (e.g., get chocolate, chop honeycomb). We
also measure the mean GED to the closest training sample for this
21-keyframes interaction, and the result is 0.48. Theoretically, con-
trols involving more degrees of freedom (e.g., body pose and hand
pose controls to allow lower-level interactions such as object manip-
ulation) can also be incorporated as long as the player’s behaviors
can be tracked and modeled in the same graph representation as in
our approach.

7.4 Activity Snippets in Mixed Reality
Our generated activity snippets could be experienced in mixed real-
ity (MR). In contrast to fully virtual scenarios, mixed reality needs to
copewith both real and virtual instances concurrently. Our approach
can adapt to specific physical environments by using real-scene ini-
tialization. To achieve this goal, the real scene graph should first be
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Fig. 13. A "serve food" activity snippet in mixed reality. The real scene
graph was used as a partial keyframe description. The generated complete
keyframe description, which included both real instances (indicated by
rectangular nodes) and augmented virtual instances (indicated by circular
nodes), was instantiated and visualized through a mixed reality headset.

extracted from the physical environment as depicted in Figure 13.
We employed the settings as in [Li et al. 2022] to scan the 3D real
environment and extract its geometric and semantic information.
In our experiment, we tracked the head position and orientation of
the player using a mixed reality headset (a Microsoft HoloLens 2),
and we inferred that the player sat on the chair when the head co-
ordinates projected onto the 2D floor plane were close to the chair’s
and when the height of the head decreased. If more tracking devices
or sensors (e.g., hand-tracking gloves) are available, our approach
could be extended to incorporate more types of interactions with
mixed reality environments.
The real scene graph was used as a "partial graph" of the initial

keyframe description that only encoded real characters and ob-
jects. Additional virtual nodes and edges were augmented using the
keyframe description generator. During the keyframe description
generation, the generator was refrained from modifying nodes and
edges corresponding to real people and objects (i.e. setting zero prob-
abilities of taking operations on them). The instantiation module
then applied the optimization process to pose the virtual instances,
and the instantiated activity snippet was presented through a mixed
reality device.

7.5 Perceptual Study
We conducted a perceptual study to evaluate the quality of the activ-
ity snippets, considering both the generated keyframe descriptions
and their instantiations. We recruited 300 participants on Amazon
Mechanical Turk to rate 10 activity snippets in this study, including
the 6 pieces shown in Figure 1, 3, and 8, and the additional 4 results
in Figure 4 in our supplementary material.

We expected participants to rate the generations conditioned on
real-world video recordings: For each trial of evaluating a generated
activity snippet, we picked 5 video clips that have the same activity
label and meanwhile the closest initial keyframe (i.e. counting the
number and categories of nodes and edges, such that the videos

Table 1. Statistical results of participants’ ratings on the reasonableness,
intuitiveness, placement plausibility (Placement P.) and overall plausibil-
ity (Overall P.) of the generated activity snippets. The mean, median and
standard deviation (SD) values are reported. Each metric is computed us-
ing 3, 000 ratings for 10 activity snippets based on a 5-point Likert scale (1
meaning "the lowest" and 5 meaning "the highest").

Reasonable Intuitive Placement P. Overall P.
Mean 3.89 3.77 3.89 3.88
Median 4 4 4 4
SD 0.92 0.90 0.88 0.90

presented similar initial scene setups) from the MOMA [Luo et al.
2021] dataset, and showed these video clips before showing our
generated results. The purpose was to let participants know about
the original activity patterns of our learned model, which might
help them evaluate if the scenes and interactions in our generated
results generally match the observed patterns given the activity
labels. We added short pauses when the play of activity snippets
came to the keyframes. After showing both the example video clips
and the activity snippet in each trial, we asked participants to rate
on four metrics:
(1) Reasonableness: How naturally and realistically the activity ad-

vanced in general given the activity label, considering characters’
interactions with each other and with objects.

(2) Intuitiveness: How well participants could understand what was
happening in the scene.

(3) Placement plausibility: How plausibly instances were posed at
the discrete keyframes.

(4) Overall plausibility: How plausibly the instances behaved overall
considering both the poses and animations.
We use a 5-point Likert scale for all questions, with 1 meaning

"the lowest" and 5 meaning "the highest". Metrics (1) and (2) were
related to the quality of generated keyframe descriptions, while
(3) and (4) were related to the instantiations and animations. We
group the ratings by the metrics for all the 10 activity snippets and
show statistical results in Table 1 with 3, 000 ratings for each metric.
Our supplementary material includes statistical results of ratings
on each activity snippet. A majority chose 4 for all the metrics.
The positive ratings suggest that, conditioned on observations from
real-world recordings, the participants thought that our generated
results embody the expected activity patterns in general, and the
instantiations and animations reasonably recover the relationships
encoded in the abstract descriptions.

8 LIMITATIONS AND FUTURE WORK
In this work, we present an approach to address a novel problem of
activity snippet generation. We use a deep graph generative model
to generate high-level keyframe descriptions for an activity snippet
as a sequence of graphs, and instantiate those keyframes in virtual
scenes through a two-stage optimization. Our experiment results
validated the effectiveness of our approach and its flexibility to be
applied in different application scenarios.
A typical failure case of our approach is that, when generating

keyframe descriptions, nodes are sometimes added with no causality.
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However, we expect that nodes, especially objects, should be added
into the scene following some logic. For example, movable objects
should be brought into the scene by characters, or be created on the
condition that some other required objects exist and some specific
actions are taken, such as the cooking examples discussed in Sec-
tion 7.2. This issue is partly caused by the limitation of our training
data: when annotating interactions captured in 2D videos, some
objects that existed in a scene could be out of view from the camera
at the beginning, but they might show up later as the camera moved.
We believe that 3D interactions recorded in virtual environments,
such as the metaverse or VR games, could serve as more compre-
hensive training data to mitigate this problem. We conducted an
investigation in Section 7.2 to learn from synthetic activities. An-
other possible extension is to incorporate a more powerful temporal
module (e.g. Transformer [Vaswani et al. 2017]) instead of a simple
LSTM as in our implementation to learn the activity advancements.

While the training data in our work is derived from public videos,
the use of real human activity data, especially from future 3D meta-
verse applications, may arouse privacy and ethics concerns. It is
worth investigating important problems about preserving users’
privacy (e.g., recordings of metaverse players’ social behaviors) and
resolving potential biases (e.g. gender, age groups) in the data.
Our current approach generates discrete keyframe descriptions

of activity snippets. In the future, it is worth investigating defining
edge labels of high granularity, such that minor changes in the scene
can be encoded in the graph. Based on that, it is feasible to more
densely sample keyframes and generate smoother interactions.

Our approach first generates abstract keyframe descriptions and
then instantiates them in 3D scenes. As pose tracking and 3D interac-
tion data become increasingly available in the future, precise poses
of characters and objects can be recorded along with the high-level
descriptions of interactions, such that an end-to-end model could be
trained to generate activity snippets in one step. A related topic is
to integrate motion synthesis techniques [2021a; 2019; 2021a] with
our approach to substitute the interpolated transitive animations
used in this work.

A compelling application in the future is to utilize our approach
to drive an interactive authoring tool. Users may generate activity
snippets either in a fully-automatic manner by only specifying
activity labels, or in a semi-automatic manner by including manual
authoring content or desired edits as partial constraints (like the MR
experiment in Section 7.4) and driving our approach to complete
the missing details.

An interesting topic is to apply our approach for AR/VR training
or instructions [Chidambaram et al. 2021; Ipsita et al. 2022]. While
we have validated that our approach could be extended to learn
novel activities or tasks (Section 7.2), to support users’ interactions
(Section 7.3) and to facilitate mixed reality scenarios (Section 7.4), it
is worth investigating collecting interaction sequences to complete
specific tasks, using our approach to learn such dynamics, and
employing the learned model to dynamically guide trainees step by
step to finish the tasks based on their interactions with the scene.
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