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We present a novel interactive augmented reality (AR) storytelling approach
guided by indoor scene semantics. Our approach automatically populates
virtual contents in real-world environments to deliver AR stories, which
match both the story plots and scene semantics. During the storytelling
process, a player can participate as a character in the story. Meanwhile,
the behaviors of the virtual characters and the placement of the virtual
items adapt to the player’s actions. An input raw story is represented as a
sequence of events, which contain high-level descriptions of the characters’
states, and is converted into a graph representation with automatically
supplemented low-level spatial details. Our hierarchical story sampling
approach samples realistic character behaviors that fit the story contexts
through optimizations; and an animator, which estimates and prioritizes
the player’s actions, animates the virtual characters to tell the story in AR.
Through experiments and a user study, we validated the effectiveness of our
approach for AR storytelling in different environments.
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1 INTRODUCTION
Recent developments of augmented reality (AR) technologies and
visual computing techniques lead to the rising popularity of AR
applications. The core intuition of AR is to enhance real world
experiences with virtual contents. While AR applications nowadays
commonly use acquired scene geometries for AR content placement,
a growing trend is to leverage additional information such as scene
semantics and tracked user’s behaviors to deliver immersive and
compelling AR experiences such as interactive AR storytelling.

In this paper, we propose a new approach to enable interactive AR
storytelling guided by indoor scene semantics. Specifically, we focus
on telling AR stories composed of daily activities, which happen in
diverse indoor environments all around the world. Think about a
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Fig. 1. Our approach automatically poses AR contents based on scene
semantics. This example shows an event in a kitchen with a human player
participating as a character in the story, interacting with virtual characters.

simple activity such as a family chitchatting over dinner. This activ-
ity is performed by numerous families at numerous homes every
evening. While the activity is contextually similar at each occur-
rence, its instantiation varies with the scene layouts and semantics
of different homes, and with the behaviors of the participants. Sup-
pose a story involves such an activity as one of its events. We can
realize this story in AR at different homes if we have a computational
approach that automatically adapts and animates the AR contents
of a story according to the player’s real-world surroundings and
behaviors. Such an observation motivates our approach.
While there are progresses on positioning virtual agents [Lang

et al. 2019; Tahara et al. 2020] and synthesizing a sequence of sym-
bolic behaviors for a virtual pet [Liang et al. 2021b], interactive
storytelling is a more challenging task as it involves a sequence
of story events and many possibilities of interactions between the
characters, including the AR player. Specifically, the challenges in-
clude: (1) How to position and pose the virtual contents. A specific
difficulty with AR storytelling is that multiple virtual characters or
objects might interact with each other, thus their positions and poses
should be considered jointly; (2) How to choose an optimal solution
to accommodate the story event contexts. For example, between
multiple chairs in a scene, which chair should a virtual character
choose in an event? (3) How to ensure the temporal coherence be-
tween the events of a story. Since a story happens chronologically,
how to instantiate a story in a scene should not only consider spa-
tial relations at a certain event, but also temporal relations between
events at different time frames; (4) How to adapt the same story to
different real-world environments.
In addition to addressing these challenges, our approach inte-

grates user interactions in AR storytelling. The goal is to enable a

ACM Trans. Graph., Vol. 41, No. 4, Article 91. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530061
https://doi.org/10.1145/3528223.3530061
https://doi.org/10.1145/3528223.3530061


91:2 • Changyang Li, WanWan Li, Haikun Huang and Lap-Fai Yu

player to take the role of a character and interact with other virtual
contents according to the story plots. The main types of player
interactions we consider include where to stay and what items to
interact with in different event activities. Figure 1 shows an example.
Such a feature requires our approach to dynamically adapt the story
to the player’s actions.
To this end, we design a hierarchical story sampling approach

that takes abstract story descriptions as a sequence of events as the
input, and then automatically supplements details to instantiate the
story in a real scene. Our approach first samples spatial candidates
for each event considering local spatial relations, and then applies a
temporal story assembly to link selected spatial candidates together
to produce a complete story. During the storytelling process in AR,
our approach estimates the player’s actions and samples new story
assemblies to update the AR contents on the fly. Our approach can be
applied in AR gaming and education, such as Fragments [Microsoft
2016], a holographic game in which life-sized characters can share
real space and interact with players. The major contributions of our
work include the following:

• We propose a novel problem of interactive AR storytelling
involving virtual characters, items, and events to take place in
different real scenes, considering scene layouts and semantics.

• Wepropose a hierarchical story sampling approach that adapts
story events to the player’s dynamic behaviors in a real envi-
ronment. By sampling spatial candidates followed by story
assemblies with temporal considerations, our approach sup-
ports interactive update of the story at runtime, enabling the
player to participate as a character in AR storytelling.

• We validate the effectiveness of our approach by conducting
AR experiments and a user study in real scenes.

Code for our paper is available at https://github.com/Changyangli/
ar-storytelling.

2 RELATED WORK

2.1 Scene Understanding for Mixed Reality
Previous works have investigated applying scene understanding for
mixed reality experiences. Some AR methods use geometry informa-
tion to blend virtual items into physical environments. For example,
FLARE [Gal et al. 2014] uses planar geometry for generating ob-
ject layouts for AR applications. SnapToReality [Nuernberger et al.
2016] automatically aligns virtual items to physical constraints such
as linear edges and planar surfaces extracted from the real world.
Some AR approaches use scene semantics in addition to geometry,
for example, exploiting semantic associations between virtual in-
terfaces and physical environments [Chen et al. 2018; Cheng et al.
2021; He et al. 2022; Lindlbauer et al. 2019],authoring context-aware
applications [Wang et al. 2020], constraining spatial relations for
AR agent positioning [Lang et al. 2019], and synthesizing realistic
virtual pet behaviors [Liang et al. 2021b]. Scene understanding also
helps enhance virtual reality experiences, such as restructuring vir-
tual scenes to fit with physical environments [Dong et al. 2021] and
facilitating navigation [Li et al. 2021]. 3D scene datasets such as Mat-
terport3D [Chang et al. 2017], which we used in our experiments,
facilitate scene understanding research.

Fig. 2. Two AR story events in an apartment scene. AR views are shown in
the green boxes. The blue avatar refers to the AR player.

Our work is inspired by Retargetable AR [Tahara et al. 2020],
which uses 3D scene graphs to associate AR contents with physical
environments to produce natural spatial arrangements. However,
while Retargetable AR considers only spatial relations for a detailed
input interaction context, our approach jointly contemplates spatial-
temporal relations for an abstract sequence of story events descrip-
tions and covers a large variety of activity possibilities. Moreover,
while Retargetable AR places static AR contents in real environ-
ments considering scene contexts, our approach enables a human
player to participate in the storytelling process, whose activities are
adaptive to the player’s dynamic actions at runtime.

2.2 Augmented Reality Storytelling
Storytelling is a form of communication where people share un-
derstandings and experiences [Cassell and Ryokai 2001]. As for
the usage of AR in storytelling, early works has explored appli-
cations including education and entertainment [Billinghurst et al.
2001; Grasset et al. 2008; Zhou et al. 2004]. More recently, Rumiński
and Walczak [2013] introduced a mobile AR authoring tool called
MARAT. Glenn et al. [2020] proposed a system called StoryMakAR,
which merges electro-mechanical devices with virtual characters
to create stories. SceneAR [Chen et al. 2021] is another mobile ap-
plication for creating sequential scene-based micro narratives in
AR. Other works use mobile phones as direct controllers for ani-
mating AR characters [Anderegg et al. 2018; Ye et al. 2020]. Virtual
stories can also be created using multi-agent simulators like Virtu-
alHome [Puig et al. 2018]. While most of these prior arts are about
efficient story authoring and animating created contents without
considering the player’s participation, our work focuses on adapt-
ing predefined stories to real scenes and player actions to enable
interactive AR storytelling.

2.3 Human Activities and Environments
Modeling and generating virtual human behaviors based on scene
semantics are critical for augmented reality, and it is a long-standing
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Fig. 3. An overview of our approach. In the preprocessing phase, scene semantics are extracted in a semi-automatic manner, and meanwhile a story graph is
extracted from an input story script. A spatial candidates sampling process prepares a set of candidate AR content poses within each event locally. In the
interactive storytelling process, the AR player keeps interacting with the AR contents at each event, and such interactions are passed as an input to the story
assembly module for picking optimal spatial candidates for the following events adaptive to the player’s actions.

problem in graphics and vision. For example, researchers have de-
vised techniques to predict the likelihood of actions and pose hu-
mans realistically to interact in scenes [Gupta et al. 2011; Hassan
et al. 2021b; Kim et al. 2014; Savva et al. 2014, 2016]. On the contrary,
human activities can also guide 3D scene synthesis [Fisher et al.
2015; Ma et al. 2016]. Generating scene-aware human motions is
another research problem, which requires understanding contexts
for interactions between human and the environments [Agrawal
and van de Panne 2016; Bai et al. 2012; Cao et al. 2020; Hassan
et al. 2021a; Pirk et al. 2017; Starke et al. 2019; Wang et al. 2021a,b].
Moreover, robots may also participate in activities to facilitate in-
teractions between humans, robots and environments [Choi et al.
2022; Qiu et al. 2020; Zhi et al. 2021].

Synthesizing continuous human motion in 3D space is a challeng-
ing task still. Since we focus on adapting AR stories to real scenes
by considering spatial-temporal relations between events at discrete
time frames, our approach only considers symbolic interaction pri-
ors in realizing story events without generating motion transitions.
For example, for the question "where should a human sit to watch
TV?", the answers could be "a sofa or a chair". We collected a dataset
of such priors and used an animator comprising a set of pre-defined
animations to complement motion transitions between character
states in different events.

2.4 Representing Human Activities Using Graphs
Graphs are expressive and flexible for representing people and envi-
ronments, and can be generally applied for modeling diverse tasks.
For example, abstract graph representations are used for scene com-
parison and novel scene synthesis [Fisher et al. 2011; Li et al. 2019;
Xu et al. 2013]. In computer vision, scene graphs [Chang et al. 2021;
Johnson et al. 2015] are used for encoding object relationships in
scenes as well as for high-level visual scene understanding and
reasoning. Another family of methods use And-Or graphs [Zhu

and Mumford 2007] with stochastic grammar models to parse hi-
erarchical scene structures [Qi et al. 2017; Zhao and Zhu 2013]
and synthesize 3D scenes [Jiang et al. 2018; Qi et al. 2018]. We use
graphs to represent AR stories, which comprise spatial relations
between the environments, characters and objects, together with
their activities; as well as temporal relations between story events.

3 OVERVIEW
Our approach takes an abstract story description and a target scene
as initial inputs, and dynamically assembles and animates a story
according to the player’s interaction with the scene and virtual
characters. Figure 2 shows two example events in an apartment
scene. We use a blue avatar wearing AR glasses to represent the
AR player, and the first-person AR views are shown for the demon-
strated events. Figure 3 shows an overview of our approach, which
comprises the following two stages:

Preprocessing. Our approach first extracts scene semantics from
the point cloud of the scanned target scene for storytelling (Sec-
tion 4). The semantics is initialized by an instance segmentation
model and oriented bounding boxes (OBBs) estimation heuristics,
and then refined by a manual process to guarantee completeness
and correctness. Our approach then generates a story graph, which
contains a sequence of event graphs, as a detailed instantiation of
the input story script (Section 5). Next, the extracted scene seman-
tics and story graph are passed to a spatial candidates sampling
module (Section 6.1) to parameterize the spatial graphs, which are
sub-graphs of the event graphs and refer to diverse possible spatial
relations, via a Markov chain Monte Carlo (MCMC) sampling.

Interactive Storytelling. Based on the generated event graphs, to-
gether with the sampled spatial candidates of the spatial graphs
under them, a temporal story assembly module (Section 6.2) is trig-
gered. The module selects a spatial graph branch and then a spatial
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candidate for each event graph to propose an event instantiation.
It then links all event instantiations together to assemble a story
considering temporal relations. The module dynamically updates
the story by reassembling it based on the players’ actions in real
time (Section 7.1). The story is animated (Section 7.2) and displayed
to the player via an AR headset.

4 LINKING SCENE SEMANTICS TO STORY ACTIVITIES
A prerequisite for our approach, which automatically generates
story activities compatible with various input scenes, is understand-
ing the scene semantics including the semantic labels of the objects
and their spatial relations. Given an input scene, we first apply a
preprocessing step to obtain segmented instances, together with
their semantic labels, oriented bounding boxes and room labels.

We devise a semi-automatic scene semantics processing approach.
Instead of scanning and processing the 3D mesh only in the field
of view at runtime, which is commonly done in AR applications
for placing virtual characters or objects onto detected regions, we
scan the whole scene and process the spatial scene geometry and
semantics. We use SSTNet [Liang et al. 2021a], which is the state-of-
the-art 3D scene instance segmentation method, to obtain the initial
instances in the scanned 3D scene and predict their semantic labels.
Alternatively, this can be achieved using interactive 3D labeling
techniques while scanning the environments [Valentin et al. 2015].
Following that, we estimate the OBBs for each segmented instance
using geometric heuristics similar to [Tahara et al. 2020].
Following the instance segmentation and OBBs estimation, an

annotator performs a manual refinement process for two reasons.
First, the number of semantic labels is limited in currently available
training dataset for the instance segmentation task, thus the auto-
matic instance segmentation method cannot deduce some instances’
categories. Second, to ensure the correctness of story instantiation,
the annotator manually inspects the instance segmentation and
OBBs estimation results to fix any error. The annotator also assigns
room labels to regions inside the input scene, and the labels are in-
herited by instances within the corresponding regions. The manual
refinement is done using a metaphor involving mainly clicking and
dragging operations in the Unity3D game engine.

Fig. 4. Discretizing a support-
ing space into character slots.

In our framework, a character is
associated with one furniture in-
stance at any time event frame. To
simplify the problem, we discretize
the region of instances that can sup-
port a character. For example, a sofa
that can support multiple characters
is split into multiple slots with the
same semantic label, while a chair
that can support only one character
does not need such a split. Similarly,
we discretize the space in a region
that a character may stand and ac-
cess specific furniture or objects (e.g.
stand by the stove and cook) to make the solution space consistent.
Overall, we define two types of character slots, namely stand slot
and sit slot. Once a character slot is taken by a character, it is marked

as occupied. The character slot splitting for both types is completed
by using geometric heuristics that splits the space by a person’s
approximate width. Figure 4 shows an example.

5 AR STORY REPRESENTATION
In our approach, an AR story is initially described in a high-level
script. The low-level details regarding possible realizations of the
story events are automatically completed by our approach in the
spatial candidate sampling process. The overall story comprising a
sequence of story events together with their possible intantiations
is represented as a story graph.

5.1 Raw Story Scripts
We first discuss the representation of the input raw story scripts.
We define the atomic element 𝑏 = (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑟𝑜𝑜𝑚) as a
tuple that describes the state of a character in an event. In our work,
a raw story only describes the high-level contexts between a fixed
number of characters such that 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is a symbolic label (e.g.,
watch TV, read books). Details of the activity will be complemented
automatically on the story graph later. For example, for the activity
"watch TV", details may contain “sit on a sofa or a chair”, “which
slot of the sofa or which of the chairs”, and “how is the character
posed regarding body and head orientation”. The parameter 𝑟𝑜𝑜𝑚
refers to the room (e.g., a living room) where the activity happens.

A raw story comprises 𝑇 event frames. So a story is represented
as a set of all event frames E = {𝑒𝑘 }𝑘=1,2,...,𝑇 . Each event frame
𝑒𝑘 = {𝑏𝑐 } is itself a set containing the state 𝑏𝑐 of each character 𝑐 at
that frame. For example, an event frame may encode “a character
watching TV in the living room”. Our approach will generate spatial
candidates about how a character may watch TV (e.g., sitting on a
specific chair with a certain pose) to realize the event.

5.2 Indoor Activity Priors
To cover a variety of possible cases for abstract character activity de-
scriptions, we define a probabilistic model for AR story adaptation.
For example, characters’ preferences of choosing a sofa or chair to sit
for watching TV might be inferred from some daily activity priors.
We collected a set of 200 pieces of data for defining our probabilistic
model. Instead of retrieving activity priors from observations like
in [Savva et al. 2014, 2016], we directly asked about symbolic pref-
erences in situations referring to specific combinations of activities
and rooms. For example, we asked if people prefer to sit on a sofa
or a chair to "watch TV in a living room". We can then infer the
priors for this situation from the users’ answers directly. Refer to
the supplementary material for more details.

Each character in the story is associated with symbolic attributes
(𝑝𝑜𝑠𝑒, 𝑣𝑒𝑟𝑏, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑒) using the collected priors. 𝑝𝑜𝑠𝑒 indicates the
character’s pose in this event (e.g., standing, sitting). 𝑣𝑒𝑟𝑏 indicates
the character’s interaction with a real furniture or a virtual item
(e.g., watching, reading, using). 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑒 refers to the furniture
object or virtual item that the character is interacting with.

5.3 Representing Stories using Graphs
Converting an event from a raw story script into animations intro-
duces uncertainty, which comes from the abstract descriptions of
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Fig. 5. A story graph representation. A story graph consists of a sequence of event graphs. Each event graph G𝑒 is rooted at its corresponding event node 𝑒 .
Each event graph comprises multiple spatial graphs. Each spatial graph 𝑆𝐺 , rooted at a node 𝑠 , contains the high-level spatial relations between the virtual
characters C, virtual items I, and the furniture objects F in a room 𝑟 ∈ R. Instantiating a spatial graph with position and orientation attributes of the
characters and items generates a spatial candidate. The two scenes on the right show the virtual characters and objects set using two spatial candidates of the
spatial graphs rooted at 𝑠1 and 𝑠2, respectively. Instantiating an event refers to selecting a spatial graph and generating a spatial candidate of this spatial graph.

character activities in each state 𝑏. For example, there are multiple
ways for a character to sit on a chair and watch TV in a living
room. We use the collected indoor activity priors to introduce such
varieties by creating probabilistic branches for an event. Especially,
since an event 𝑒 comprises a description of multiple characters’
states, various possible cases could fit the context.

Event Graph and Spatial Graph. Figure 5 illustrates our story
graph representation, based on which our approach samples event
instantiations for driving the animator to show the virtual characters

Fig. 6. A spatial graph 𝑆𝐺 is a
sub-graph of an event graph G𝑒 ,
and is associated with a spa-
tial candidate set Γ. An event
instantiation 𝑒 of event 𝑒 is
proposed by selecting a spatial
graph branch and selecting a
spatial candidate 𝛾 ∈ Γ.

and items in augmented reality to
tell the story. At the highest level is
the story graph which encodes the
sequence of event frames {𝑒𝑘 } of the
story. Each event frame is associated
with an event graph G𝑒 . Each event
graph comprises multiple alternative
spatial graphs, where each spatial
graph 𝑆𝐺 encodes one possible spa-
tial relations of the virtual characters
and items with the layout of a room
for realizing event 𝑒 . Figure 6 illus-
trates the relations between an event
graph and a spatial graph.
Formally, let an event graph be

G𝑒 =< 𝑒,S,R, F , C,I,P >. Here,
event 𝑒 describes the high-level
states of all participating characters.
For notation convenience, we also
let 𝑒 refer to the root node of the event graph G𝑒 . S = {𝑠} is the set

of root nodes of all the spatial graphs under this event graph. R is
the set of room nodes. F is the set of furniture nodes. The rooms
and furniture objects are extracted from the 3D scan of the indoor
scene where the story is played, and these two sets R and F jointly
depict the static indoor scene structure. C = {𝑐} is the set of virtual
characters in the event. I = {𝑖} is the set of virtual items needed for
character interactions in this event. Again, for notation convenience,
let 𝑐 and 𝑖 also denote the corresponding virtual character node and
virtual item node in the graph. P denotes a probability model used
for selecting which spatial graph 𝑆𝐺 to use for realizing this event
𝑒 . Note that room structure nodes (in R and F ) are static in one
indoor scene and they are shared between all spatial graphs.

Spatial Candidate. While a spatial graph 𝑆𝐺 encodes the high-
level spatial relations of the virtual characters and items with the
layout of a room at an event frame, the low-level details regarding
the positions and orientations of the characters and items are not
described. For example, given the context "a virtual character sits
on the sofa", which part of the sofa the character sits on and what
direction it is facing are still unclear. Therefore, each character
node 𝑐 ∈ C is attributed by (𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ), where 𝜌𝑐 is the position,
𝜃𝑐𝑏 is the body orientation, and 𝜃𝑐ℎ is the head orientation of the
character. As we discretize the space that a character can occupy
(Section 4), 𝜌𝑐 refers to the position of a character slot. Similarly,
each virtual item node 𝑖 ∈ I is attributed by (𝜌𝑖 , 𝜃𝑖 ), where 𝜌𝑖
and 𝜃𝑖 refer to the item’s position and root orientation. In case a
character is carrying a virtual item, the item node 𝑖 is attached to
the character node 𝑐 , and 𝑖 inherits the position and orientation
from 𝑐 . Given a spatial graph 𝑆𝐺 , we define an instantiation of the
attributes of all the virtual characters and items as a spatial candidate
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𝛾 =
{
{(𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ)}, {(𝜌𝑖 , 𝜃𝑖 )}

}
. In other words, a spatial candidate

contains the position and orientation information by which the
animator puts virtual characters and items in a scene.

Event Instantiation. Given an event 𝑒 , there are multiple high-
level spatial arrangements between the virtual characters, items,
and a room layout for realizing the event. For example, to sit in a
living room and watch TV, a character may choose to sit on a chair
or a sofa. Each spatial arrangement is encoded by a spatial graph 𝑆𝐺 .
So an event graph G𝑒 typically comprises multiple spatial graphs.

Inspired by [Qi et al. 2017], we define the OR rule on event node 𝑒
as a switch 𝑒 → 𝑠1 |𝑠2 | . . . |𝑠𝑛 , where each 𝑠𝑘 refers to the root node
of a spatial graph and 𝑛 refers to the total number of spatial graphs.
The probabilities P1 |P2 | . . . |P𝑛 refer to the probabilities of choosing
the spatial graphs, which are defined in the probability model P
of event graph G𝑒 . The probability model is computed using the
indoor activity priors described in Section 5.2.

Given an event, to instantiate the event means selecting the high-
level spatial arrangements between the virtual characters, items,
and a room layout, followed by determining the positions and orien-
tations of the virtual characters and items. More formally, we define
an event instantiation 𝑒 of event 𝑒 as selecting a spatial graph 𝑆𝐺

under the event graph G𝑒 and then generating a spatial candidate 𝛾
for this spatial graph 𝑆𝐺 .

Showing a Dynamic Story. Given a story represented by the set of
all event frames E = {𝑒𝑘 }𝑘=1,2,...,𝑇 , if we generate a corresponding
set of event instantiations {𝑒𝑘 }𝑘=1,2,...,𝑇 , the animator can then refer
to each event instantiation 𝑒𝑘 to put virtual characters and items in
the scene to deliver each event 𝑒𝑘 chronologically to tell the story.
As our approach supports the AR player’s participation in the

story, our approach dynamically updates the set of event instantia-
tions according to the player’s interactive behaviors. For example,
if the player chooses to sit on a chair, the virtual characters will
choose to sit on other chairs. Suppose the current event frame is 𝑒𝑡 .
We define the set of event instantiations 𝐸𝑡 = {𝑒𝑘 }𝑘=𝑡,...,𝑇 , which
contains the instantiations of the current event frame 𝑒𝑡 up till the
last event frame 𝑒𝑇 of the story. Suppose the player performs an
action 𝑎𝑡 , our approach resamples 𝐸𝑡 through an optimization to
generate the “best course” of the current and upcoming events of
the story considering both spatial and temporal constraints. The
animator then transitions from the previous event frame 𝑒𝑡−1 to the
current event frame 𝑒𝑡 by referring to event instantiations 𝑒𝑡−1 to
𝑒𝑡 . We discuss the details of optimization-based story sampling in
Section 6 and dynamic story assembly in Section 7.

6 HIERARCHICAL STORY SAMPLING
We devise a story sampling framework for interactive AR story-
telling. Since a story is described in the tangled spatial and temporal
domains, the overall search space can be large and sparse. It can be
difficult to sample a story solution efficiently by directly modeling
the whole story as a single configuration, especially when there are
multiple events that contain long temporal constraints, and when
there are multiple virtual characters participating in a single event
with complicated spatial constraints.

Fig. 7. Two cases considering the individual activity cost. For vision only
activities, our approachmainly considers the forward directions (red vectors)
of the character and item, as well as their relative direction (green vector).
For activities involving physical contact, our approach further considers the
accessibility to the interactee item.

To cope with these challenges, we divide the story sampling pro-
cess into two steps: (1) spatial candidates sampling, which considers
spatial constraints within each spatial graph 𝑆𝐺 for generating spa-
tial candidates; and (2) story assembly, which uses the generated
spatial candidates to assemble a story solution considering temporal
constraints and dynamic player actions.

6.1 Spatial Candidates Sampling
To facilitate story assembly during the AR storytelling runtime, our
approach first samples spatial candidates for each spatial graph 𝑆𝐺 .
Formally, let Γ𝑡,𝑢 = {𝛾𝑡,𝑢,𝑣} be the set of spatial candidates for the
𝑢-th spatial graph 𝑆𝐺𝑡,𝑢 under the event graph G𝑒𝑡 at frame 𝑡 .

To simplify the problem, we do not consider cross-room activities,
which are not very common in real-life scenarios. Therefore we
assume that activities happening in different rooms are independent
of each other. In the spatial candidates sampling process, solutions in
rooms where virtual characters and virtual items stay are separately
sampled, and random combinations of them are saved as the spatial
candidates Γ𝑡,𝑢 . The following discussion uses an example scenario
in a single room which includes multiple virtual characters and
items. We use an MCMC sampler to generate spatial candidates.

6.1.1 Cost Function. We define a spatial cost function to evaluate
whether virtual characters and items are reasonably placed and
posed in an event. To facilitate discussion, we define some variables:
(1) For a character 𝑐 parameterized with (𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ), we denote the
body forward direction as the unit vector F̂𝑐𝑏 and the head forward
direction as F̂𝑐ℎ . (2) For an item 𝑖 parameterized with (𝜌𝑖 , 𝜃𝑖 ), we
denote the forward direction as F̂𝑖 . Overall, the spatial cost function
for a spatial candidate 𝛾 is a weighted sum of cost terms:

𝐶S (𝛾) = 𝑤IA𝐶IA (𝛾) +𝑤GA𝐶GA (𝛾) +𝑤CP𝐶CP (𝛾) +𝑤IP𝐶IP (𝛾) (1)

We describe the details of each cost term in the following.

Individual Activity. For some activities, characters participate
individually and no collaboration is involved, e.g., watching TV and
using a computer as shown in Figure 7. We suppose that, ideally,
when a virtual character 𝑐 interacts with an item 𝑖 , the character’s
head should be facing the item. We define the individual activity
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Fig. 8. Example group activity results in a chat event. In each case, the
yellow points and dashed lines form the group convex hull. The yellow
region and red vector indicate the field of view and head forward direction
of the upper-right character.

cost considering characters 𝑐 ∈ C of the spatial candidate 𝛾 as:

𝐶IA (𝛾) =
1

4|C|
∑
𝑐

(
2 − ⟨v̂𝑐𝑖 ,−F̂𝑖 ⟩ − ⟨F̂𝑐ℎ, v̂𝑐𝑖 ⟩

)
. (2)

Here, v̂𝑐𝑖 =
𝜌𝑖−𝜌𝑐
|𝜌𝑖−𝜌𝑐 | denotes the direction from character 𝑐 to item 𝑖 .

⟨v̂𝑐𝑖 ,−F̂𝑖 ⟩ evaluates whether character 𝑐 is posed towards the front
direction of item 𝑖 (note that it could also be a real furniture object 𝑓
in the room, e.g., a TV, but we use just 𝑖 here for brevity). ⟨F̂𝑐ℎ, v̂𝑐𝑖 ⟩
evaluates whether character 𝑐’s head is posed towards item 𝑖 .
Note that for an activity that involves a character 𝑐 physically

interacting with an item 𝑖 , we regard item 𝑖 as accessible only if its
distance from the character |𝜌𝑖 − 𝜌𝑐 | is less than a threshold 𝐷acc
(we set 𝐷acc = 0.5m). If the distance exceeds this threshold, our
approach just takes the upper limit of the cost for this character
without evaluating the direction relationships.

Group Activity. Some activities require group participation. We
constrain the characters in a group activity to keep reasonable
poses with respect to each other in mutual gaze scenarios [Admoni
and Scassellati 2017; Argyle and Cook 1976]. To achieve this, we
approximate the gaze relations from a geometrical perspective.

For a group of two characters, ideally the two characters should
face each other, and thus the relation can be constrained akin to the
individual activity cost as in (2).
For a group of more than two characters, we define the group

activity cost with the following assumptions. Regarding characters
as points on the 2D plane, they form a group convex hull. A character
𝑐 in the group should see as many other group members as possible
within its field of view. We use a 60-degree field of view to mimic
the near peripheral vision [Grosvenor 2007] of a character 𝑐 . Denote
a character group as 𝐺C . We define the group activity cost of the
spatial candidate 𝛾 as:

𝐶GA (𝛾) =
1

|{𝐺C}|
∑
𝐺C

(
1 −𝑤a

GA
𝜑C
𝜂C

−𝑤b
GA

𝜙C
𝜂C

)
, (3)

where 𝜂C =
|𝐺C |2−|𝐺C |

2 is the total number of character pairs. 𝜑C
is the number of pairs of characters who can see each other. 𝜙C
is the number of pairs of characters with one character seeing the
other character but not the other way round. We set the weights
𝑤a
GA = 2

3 and𝑤b
GA = 1

3 to slightly favor the former case. Note that

Fig. 9. Placing items on a rectangular or a round surface.

when iterating through all groups, the upper limit of the cost for
a single group 𝐺C is directly taken if there exists any character in
the group that does not face the group convex hull.

Figure 8 shows examples of sampled group poses in a chat event
with and without this cost consideration. Without the group activity
cost, characters’ poses are mainly constrained by the character pose
cost, which is discussed later. In such a case, they only sit idle and
match their body and head orientations with the character slots. As
the figure shows, the upper-right character looks outside the group
convex hull, and no others are visible to him.
In special cases where attention should be focused on a specific

character (e.g. a case with an audience facing a speaker), we con-
strain the relation using a combination of individual activity (the
audience characters that should look at the speaker) and group
activity (the speaker should look into the group convex hull).

Character Pose. For a character 𝑐 in either type of activity, we
constrain its pose considering the character slot 𝑐𝑠 the character
takes. We have two assumptions for comfortable poses: (1) The
body’s forward direction F̂𝑐𝑏 matches the forward direction of the
slot F̂𝑐𝑠 (e.g., a chair’s seat); (2) the head rotation 𝜃𝑐ℎ , which is
relative to the body, is small. We set the maximum magnitude of
head rotation as 𝜋

2 . We define the character pose cost of a spatial
candidate 𝛾 as:

𝐶CP (𝛾) =
1

2|C|
∑
𝑐

[
1 − ⟨F̂𝑐𝑏 , F̂𝑐𝑠 ⟩

2
+ 2|𝜃𝑐ℎ |

𝜋

]
. (4)

Item Placement. For a group of virtual items 𝐺I placed together,
we consider the following item placement constraints: (1) Each pair
of items should keep a minimum distance of 𝐷id from each other to
avoid overlapping. We may use different values of 𝐷id for different
cases, depending on how closely we want the items to stay together;
(2) The virtual items in the same group 𝐺I should be tidily posed.
Our approach considers placing virtual items onto the surfaces of
two common types of shapes as shown in Figure 9. For a rectangular
surface, we constrain each item to align with others along either
axis of the 2D surface. For a round surface, we constrain the items
to keep similar distances to the center of the surface. We define the
item placement cost as follows:

𝐶IP (𝛾) =
1

|{𝐺I }|
∑
𝐺I

[
𝑤a
IP [1 −min(1, 𝜆

𝐷id
)] +𝑤b

IP𝐹IP (𝐺I )
]
. (5)
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with

𝐹IP (𝐺I ) =


1 − 𝜑I

𝜂I
for a rectangular surface

𝜎I
𝑟 for a round surface,

where 𝜆 in the first term is the minimum pairwise distance between
any two items in𝐺I . In the second term, 𝜑I refers to the number of
pairs of items in alignment and 𝜂I =

|𝐺I |2−|𝐺I |
2 is the total number

of item pairs. 𝜎I is the standard deviation of the distances of the
virtual items in 𝐺I from the center and 𝑟 is the radius of the round
surface. We set the weights𝑤a

IP = 3
5 and𝑤b

IP = 2
5 by default.

6.1.2 Optimization. We use simulated annealing [Kirkpatrick et al.
1983] with a Metropolis-Hastings state-search step [Hastings 1970;
Metropolis et al. 1953] to efficiently explore the solution space con-
taining various spatial candidate solutions. We define a Boltzmann-
like objective function:

𝑓 (𝛾) = 𝑒−
1
𝜏
𝐶S (𝛾 ) , (6)

where 𝜏 is the temperature parameter in simulated annealing. The
optimization proceeds iteratively. The temperature drops over it-
erations by a decay factor until it reaches a low value near zero.
Such a setting makes the optimizer greedier in refining the solution
towards the end of the optimization. The optimization process is
terminated as the change in the total cost converges (changing by
less than 3% over the past 100 iterations). By default, we set the
weights as𝑤IA = 3.0,𝑤GA = 1.5,𝑤CP = 1.0 and𝑤IP = 2.0.

The main goal of this optimization is to prepare plenty of opti-
mal spatial candidates for all spatial graphs through event frames
in the story as Figure 10 shows, where rings denote spatial candi-
dates. With pre-computed spatial candidates, the story assembly
process (Section 6.2) does not evaluate the detailed AR contents’
poses regarding spatial constraints, thus enhancing the assembly
efficiency to support interactive and dynamic needs. For each spatial
graph, we repeatedly apply the optimization starting from a random
initialization to prepare 50 spatial candidates in our implementation.

6.1.3 Proposed Moves. At each iteration of the optimization, our
approach applies a move on the current sample to propose a new
sample. There are three types of moves described as follows.

(i) Character Teleportation. Characters are discretely positioned
in our work. Therefore we define a character teleportation
move to assign a character to a different slot. This move
randomly chooses a character 𝑐 and then randomly picks
another character slot of the same semantic label as that of
𝑐’s current slot. If there is no other character occupying that
slot, 𝑐 is instantly teleported there, with 𝑐’s body orientation
𝜃𝑐𝑏 set to be along the forward direction of that slot and
head orientation 𝜃𝑐ℎ reset to zero. If the target slot is already
occupied by another character, themove swaps the characters’
positions, as well as their body and head orientations.

(ii) Item Translation. Virtual items are placed on planes which
support continuous translations. We define an item transla-
tion move to translate a randomly selected virtual item 𝑖 . It
adds a movement amount 𝛿𝜌 drawn from a bivariate normal
distribution to item 𝑖’s position.

Fig. 10. During story assembly, for each event 𝑒 , an event instantiation
is selected, which comprises a selected spatial graph (rooted at a node 𝑠)
together with its instantiation (i.e. a spatial candidate 𝛾 ). Red colors refer
to the selected spatial graphs and spatial candidates of an assembled story.

(iii) Rotation. Either a character 𝑐 or an item 𝑖 is randomly picked.
If a character is picked, a rotation amount 𝛿𝜃 is drawn from
a normal distribution and added to its head orientation 𝜃𝑐ℎ
(with a probability of 0.6) or body orientation 𝜃𝑐𝑏 (with a
probability of 0.4). Similarly, if an item is picked, a random
rotation amount is added to its root orientation 𝜃𝑖 .

By default, move (i), (ii), and (iii) are selected with probabilities of
0.1, 0.15, and 0.75, respectively.

6.2 Story Assembly
Using the sampled spatial candidates for the spatial graphs, the
story assembly stage dynamically assembles a story during the AR
runtime to fit with the player’s behaviors and the environment.
Note that this temporal story assembly process does not evaluate
the detailed spatial relations, which have already been considered in
spatial candidates sampling stage. Essentially, our approach trans-
fers the search for story solutions from the tangled spatial and
temporal domains into the domain of spatial candidates 𝛾 , and only
evaluates the temporal relations in story assembly, thus enhancing
its efficiency for supporting dynamic animation updates in AR.

Formally, the whole story is represented as a set of event instan-
tiations Ψ = {𝑒𝑡 }𝑡=1,2,...,𝑇 . Based on our definition, each 𝑒𝑡 is an
instantiation of event 𝑒 associated with an event graph G𝑒𝑡 by se-
lecting (1) a branch of spatial graph 𝑆𝐺𝑡,𝑢 ; and (2) a spatial candidate
𝛾𝑡,𝑢,𝑣 from the spatial candidate set Γ𝑡,𝑢 of spatial graph 𝑆𝐺𝑡,𝑢 . Fig-
ure 10 shows the process. Akin to the spatial candidates sampling
stage, we apply another MCMC sampler for the story assembly
stage with a different cost function to model the energy landscape
considering the temporal relations.

6.2.1 Cost Function. We use a cost function to encode the temporal
constraints. Overall, the temporal cost function for a sampled story
Ψ is a weighted sum of normalized cost terms:

𝐶T (Ψ) = 𝑤TL𝐶TL (Ψ) +𝑤PC𝐶PC (Ψ) +𝑤OSC𝐶OSC (Ψ). (7)

We describe the details of the cost terms in the following.

Trajectory Length. As a character’s position changes when tran-
sitioning from event frame 𝑒𝑡−1 to 𝑒𝑡 , it will need to navigate and
change its pose from (𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ)𝑡−1 to (𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ)𝑡 . Denote a
single trajectory as 𝜒 , which is estimated as the shortest path in
the given environment for such a transition. We aim to reduce the
navigation distances of characters throughout the story, in order
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to further reduce the overall characters’ navigation time in inter-
active storytelling (Section 7). We consider two aspects regarding
the trajectory lengths: (1) Reducing the overall trajectory lengths of
characters in the same event; (2) Balancing the trajectory lengths of
different characters to avoid the situation that one takes a short path
while another takes a long path. The cost considering the trajectory
set {𝜒} on an event instantiation 𝑒 in Ψ is:

𝐶TL (Ψ) =
1
|Ψ|

∑
𝑒

[
𝑤a
TL

|{𝜒}|
∑
𝜒

(1 − |𝜒 |∗
|𝜒 | ) +𝑤

b
TL (1 − 𝑒−𝜎𝜒 )

]
, (8)

where |𝜒 |∗ is the estimated lower bound (i.e. navigating to the
nearest character slot) for a character on the event instantiation 𝑒 .
𝜎𝜒 is the standard deviation of trajectory lengths in {𝜒}. We set
𝑤a
TL = 3

4 and𝑤b
TL = 1

4 as the weights of the two terms.

Position Consistency. Under certain conditions, a character’s po-
sition likely remains consistent even if the activity changes. For
example, if a character’s activity is "sit on the sofa and watch tv" at
event frame 𝑒𝑡−1, and it becomes "sit on the sofa and chat" at event
frame 𝑒𝑡 , we assume that the character should stay at the same
slot. We define a cost to consider the positions of characters 𝑐 ∈ C
through all adjacent events 𝑒𝑡−1 and 𝑒𝑡 in Ψ:

𝐶PC (Ψ) =
1

|Ψ| − 1

∑
𝑡

[
1
|C|

∑
𝑐

𝐹PC (𝑐, 𝑡)
]
, (9)

where 𝐹PC is a function that checks if such a consistency should
exist for 𝑐 between event instantiations 𝑒𝑡−1 and 𝑒𝑡 . It returns 1
if such a consistency should exist but 𝑐’s position changes, and it
returns 0 otherwise.

Overall Spatial Cost. Each selected event instantiation 𝑒 in Ψ has
its own spatial cost, which is an optimization target itself in the
temporal domain. Essentially, our approach aims to assemble a story
using event instantiations associated with spatial candidates with
low spatial costs. We define the overall spatial cost considering event
instantiations 𝑒 ∈ Ψ as:

𝐶OSC (Ψ) =
1
|Ψ|

∑
𝑒

𝐶S (𝛾), (10)

where the spatial candidate 𝛾 is associated with the current event
instantiation 𝑒 .

6.2.2 Optimization. Akin to spatial candidates sampling, we use
simulated annealing with the Metropolis-Hastings criterion to opti-
mize a story assembly. The initial temperature in this stage is set
lower to make the optimization greedier, given pre-computed op-
timal spatial candidates. Starting from a random combination of
event instantiations, our approach searches for new story assemblies
iteratively and outputs an optimized solution in the end. By default,
we set the cost weights as𝑤TL = 1.0,𝑤PC = 2.0 and𝑤OSC = 0.5.

6.2.3 Proposed Moves. When operating in the domain of spatial
candidates 𝛾 , the story assembly moves do not directly change
detailed attributes (𝜌, 𝜃 ) for characters and items, but propose to
switch the selection of spatial candidate𝛾 for one event instantiation
𝑒 at a time. There are three steps in proposing a move:

(1) Randomly select one event frame 𝑒𝑡 ;

Fig. 11. An illustration of dynamic story assembly at event frame 𝑒𝑡 . Event
instantiations (𝑒𝑎𝑡 ) are precomputed for all possible player actions 𝑎 ∈ 𝐴

in this event and saved in the buffer Ω𝑡 , and one is picked for animation
based on the estimated action 𝑎 at runtime. Red color denotes the estimated
action and selected event instantiation.

(2) Decide whether to switch to another spatial graph branch
according to the probabilistic model P of event graph G𝑒𝑡 ;

(3) Within the spatial candidates set Γ, randomly select a target
candidate 𝛾 ′ from the previous candidate 𝛾 ’s 𝑘 nearest neigh-
bors (we set 𝑘 = 5) to allow a moderate update. The distance
between two candidates is measured in Manhattan distance.

7 INTERACTIVE AR STORYTELLING
Synthesizing fixed stories for a group of virtual characters adapted
to a real scene is feasible by running the hierarchical story sampling
pipeline described in Section 6. In this work, we further describe
how our approach can support interactive AR storytelling, enabling
a player to participate as a character in the story and interact with
virtual contents in augmented reality.

Our approach is human-centric in that the player has the priority
to make decisions in the story, and the virtual characters and events
will adapt to the decisions. For example, if all characters should
take a seat in a living room in an event, the AR player can be the
first one to choose where to sit, and all other characters will make
their choices accordingly. More specifically, the action a character
should take in an event includes: (1) where to stay, which means
picking a specific character slot; (2) what item to interact with,
which means deciding if the character should interact with a virtual
item and which instance to pick. Such considerations make the
AR storytelling experience dynamic and interactive. The player’s
actions determine how the story evolves.

7.1 Dynamic Story Assembly
In an interactive AR storytelling application, a player continuously
participates in the story and takes actions. Our approach should
update the assembled story accordingly. A main challenge is that
updating the story at runtime based on the player’s actions is com-
putationally expensive. Our approach overcomes this challenge by
precomputing spatial candidates in the preprocessing stage before
starting the AR application. The spatial candidates are optimized
with respect to different spatial considerations (e.g., group activities,
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ALGORITHM 1: Dynamic Story Assembly
Input: Event sequence E, spatial candidate sets {Γ𝑡,𝑢 } for all spatial

graphs 𝑆𝐺s, and possible player actions {𝐴𝑡 } for all events
Output: Animation of assembled story Ψ = {𝑒𝑡 }𝑡=1,2,...,𝑇
for t = 1 to T do

Buffer event instantiation set Ω𝑡 = {}
/* Precompute event instantiations for all possible actions */
for 𝑎 ∈ 𝐴𝑡 do

Update G𝑒𝑡 given 𝑎 (i.e., disabling the selection of spatial
graphs 𝑆𝐺s and spatial candidates in Γ𝑡,𝑢 that violate the
context when 𝑎 is taken)

Sample 𝐸𝑎𝑡 with the player character fixed given 𝑎 (Sec. 6.2)
Add 𝑒𝑎𝑡 ∈ 𝐸𝑎𝑡 → Ω𝑡

end
/* Dynamically estimate player actions and update animation */
do

Estimate the player’s action 𝑎 (Sec. 7.2)
Switch animation based on 𝑒�̂�𝑡 ∈ Ω

𝑒𝑡 = 𝑒�̂�𝑡
while event 𝑒𝑡 is animating;

end

individual activities, item placement). During the runtime, using
the precomputed spatial candidates, our approach efficiently up-
dates (reassembles) the story according to the player’s behaviors in
the real environment. The update is performed repeatedly for each
event until the end of the story.
Concretely, before the start of each event 𝑒𝑡 , we sample the re-

maining story represented using 𝐸𝑎𝑡 = {𝑒𝑎
𝑘
}𝑘=𝑡,...,𝑇 with respect to

each possible player action 𝑎 in that event. While we only care about
the selected event instantiation 𝑒𝑎𝑡 in the sampled story for a given
action 𝑎 at event frame 𝑒𝑡 , our approach samples the whole event
instantiation set 𝐸𝑎𝑡 to minimize the temporal costs that could be
introduced in the following events. To prepare for animating the
event 𝑒𝑡 dynamically, a buffer event instantiation set Ω𝑡 is used to
save precomputed event instantiations corresponding to all possible
player actions 𝐴 = {𝑎} such that Ω𝑡 = {𝑒𝑎𝑡 |∀𝑎 ∈ 𝐴}. An animator
(Section 7.2) estimates the player action 𝑎 at runtime and deter-
mines the action eventually taken, and animates the AR content
until event 𝑒𝑡 ends. We describe the dynamic story assembly process
in Algorithm 1 and illustrate the idea in Figure 11.

7.2 Animating the Assembled Story
Recall that we define a story as a sequence of events that describe
character states at discrete event frames. The animator of our ap-
proach visualizes the characters’ states at each frame and inter-
polates the intermediate states between any two adjacent frames.
Specifically, it animates a sampled story by the following:

• At each event frame, place each character with the proper
pose according to its high-level labels (𝑝𝑜𝑠𝑒, 𝑣𝑒𝑟𝑏, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑒)
and low-level position and orientation attributes (𝜌𝑐 , 𝜃𝑐𝑏 , 𝜃𝑐ℎ).

• During the transition from one event to the next event, if
the state of a character changes, interpolate intermediate
animation states accordingly. If a character’s position changes,
navigate the character to the new destination.

Fig. 12. Action progress estimation in an event. The predicted player action
𝑎 is associated with a destination character slot at 𝜌𝑐𝑠 . The blue curve
shows the player’s trajectory in this event, which started from 𝜌0 and has
progressed to 𝜌′ currently. The estimated action progress for action 𝑎 is
indicated by the striped red-white line segment, which refers to the projec-
tion of the player’s displacement onto −−−−→

𝜌0𝜌𝑐𝑠 . Depending on the player’s
action progress, the other virtual characters adjust their walking speeds.

When transitioning to the next frame, to give priority to the
player’s decisions, the animator adjusts the speed of the virtual
characters according to the player’s behaviors in real time. Twomain
strategies are applied: (1) We estimate the player’s speed 𝜇𝑃 and set
the speeds of the virtual characters as 𝜇𝑐 = ℎ𝜇𝜇𝑃 , where ℎ𝜇 ∈ (0, 1)
is a speed control hyper-parameter; (2) We also estimate the player’s
action 𝑎, the destination character slot of this estimated action, and
the action progress (i.e. completion progress to the destination).
Depending on the action progress, our approach adjusts the speed
of the virtual characters.

Figure 12 shows an example. Suppose the player starts at 𝜌0 and
navigates to a destination character slot at 𝜌𝑐𝑠 , and the player’s cur-
rent position is 𝜌 ′. The action progress is estimated as the projected

vector on −−−−→𝜌0𝜌𝑐𝑠 , which is
−−−−→
𝜌0𝜌𝑐𝑠 ·

−−−→
𝜌0𝜌

′

|−−−−→𝜌0𝜌𝑐𝑠 |2
. Similarly, we estimate other

virtual characters’ action progresses to their destinations.
Until the player arrives at a particular character slot, the player’s

action 𝑎 is still not finalized, and hence the destinations for the
player and the other virtual characters remain uncertain. Therefore,
to play safe, we take the action 𝑎 ∈ 𝐴 with the lowest progress
between all possible actions as the estimated player’s action 𝑎. If a
virtual character’s action progress is more than ℎ𝑝 of the progress
of the estimated player’s action 𝑎, where ℎ𝑝 ∈ (0, 1) is a progress
control hyper-parameter, the virtual character’s speed is set to a
predefined minimum speed 𝜇min = 0.1ms−1 in our implementation.
If the player has already arrived at the destination, the virtual char-
acter’s speed is set to a predefined normal speed 𝜇norm = 1.0ms−1
in our implementation. We set ℎ𝜇 = 0.7 and ℎ𝑝 = 0.8 by default.
Note that at each event, as long as the player has arrived at a

character slot, our approach immediately starts to sample story
assemblies for the next event. By doing so we aim to minimize the
wait time of the sampling process before the new event starts as
navigating virtual characters to their destinations also takes time.

8 EXPERIMENTS AND RESULTS
We show experiment results and discussions in this section. To show
third-person view that includes both the AR player and the virtual
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Table 1. Descriptions of the selected events of the four stories in different indoor scenes. [P] denotes the AR player; [m] denotes the manager; [prof] denotes
the professor; and others are general characters without specific roles.

Apartment Office Teaching building Makerspace
Event 1: [P] uses a cell phone Event 1: [m] hosts a meeting Event 1: [P] reads a book, [a] Event 5: [P,a,b] edit digital
in the dining area, [a] cooks in the meeting area, texts [prof] to make an designs on computers in the
in the kitchen, [b] uses a [P,a,b] listen to [m] appointment, in the meeting area media room
computer in the living room
Event 7: [a] makes coffee, [P,b] Event 3: [P,a,b] use computers Event 4: [P,prof,a] discuss in the Event 7: [P,a] watch the 3D
carry coffee, in the kitchen in the workspace discussion area printing in the makerspace
Event 8: [P,a,b] chat in the Event 8: [P,m,a,b] chat in the Event 8: [P] presents the project Event 8: [P,a,b] chat in the
living room meeting area to [prof,a,b,c] in the meeting area makerspace

Fig. 13. Results of selected events described in Table 1 in four different scenes. The input scenes are shown at the top. The blue avatar denotes the AR player,
whose pose is approximated from the recorded AR headset trajectory considering specific events.
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characters, we recorded AR player trajectories during the experi-
ments and used the blue avatar to recover interactive AR story. Note
that since we were only able to track the position and orientation of
the AR headset, we used an inverse kinematics algorithm [Aristidou
et al. 2018] to approximate the human pose and assigned proper
animations to the stickman according to the states of the character
that the AR player took in certain story events. For example, in
an event that the player should sit down and use a computer, we
set a sitting pose and retrieved the hand gestures of hovering over
the keyboard from the associated animation. While our main paper
shows static screenshots, we replay the recorded dynamic story-
telling trajectories in our supplementary video for all experiments
in this section. We include additional experiments of augmenting
physical environments for AR stories and retargeting AR stories to
different scenes in our supplementary material.

8.1 Implementation
We conducted our experiments on a machine equipped with 32 GB
of RAM, an Intel Core i7-9700 CPU and an NVIDIA GeForce RTX
2070 GPU. The overall framework was built using the Unity3D game
engine. We used a Microsoft HoloLens 2 to provide AR experiences.
All of the four different stories in our experiments comprised eight
events, and in our scenes with moderate numbers of character slots,
spatial candidates sampling for each took about 3−5minutes. During
the dynamic storytelling process, the preparation time for the buffer
event instantiation set at an event frame, which depends on the
number of possible player actions and the number of remaining
events to instantiate, ranged from about 0.5 seconds to 5 seconds.

8.2 AR Storytelling in Real Environments
We evaluate the overall framework in four different real world
environments: an apartment, an office, a teaching building and a
makerspace. Different stories, each consisting of eight events, are
adapted to the four scenes. Table 1 shows three selected events for
each story, which are visualized in Figure 13. Our supplementary
material contains full descriptions of the stories.
In general, the assembled stories are shaped well by the cost

function. First, AR contents are reasonably placed into the real
environments such that they do not violate the scene geometries (e.g.
overlapping with the environments) and semantics (e.g. standing on
a chair or sitting on a stove). Second, virtual characters are naturally
posed to achieve activities described in the events: For individual
activities, characters keep probable gestures and interact with either
real furniture objects or virtual items, like touching either virtual
laptops or real PCs in the office. For group activities, they are able
to keep mutual gazes with others. Third, temporal relations are
embodied during the AR storytelling. For example, in Event 7 of the
apartment story, characters [P] and [b] go to slots where coffee cups
are accessible, which are placed in the previous event. Consistency
constrained by Equation 9 is also reserved between event frames,
which is better visualized in our supplementary video. Fourth, the
coexistence of players and virtual characters helps validate the
interactiveness. These results suggest that our approach is capable
of assembling different stories and showing them in different types
of environments given specific scene geometries and semantics.

8.3 Adaptive AR Activities
In Figure 14, for each event we show the virtual character’s behav-
iors with respect to a certain action of the AR player. As described in
Section 7.1), our approach should dynamically adapt the virtual char-
acter’s behaviors according to the AR player’s action. To validate
that event instantiations produced by our approach are adaptive
to the player’s actions, we pick one event from each story in the
previous experiment and show such variations. Figure 14 shows the
results. All these events include the AR player and multiple virtual
characters, who headed to sittable character slots in the same room.
Since we prioritize the AR player’s actions, the virtual characters’
behaviors adapted to the player’s actions in such events. According
to the results, when the player took different character slots, virtual
characters always picked other slots accordingly, while keeping
reasonable gestures that fit the contexts of the events.

9 USER STUDY
We performed a user study to validate the quality of AR stories
assembled by our approach. As our formulation is centered around
the realistic placement of virtual characters and objects in the scene
with respect to the story events, we aim to evaluate the plausibility
of the synthesized AR contents, taken as “how realistic, natural,
and believable the AR contents are considering their poses”. We
explained this term to designers who manually arranged AR con-
tents to create stories for comparison purposes, and to user study
participants who experienced and rated the stories.

9.1 Settings
We compared the outputs of our approach with three manually
created stories. The office story described in Table 1 was selected in
this study. The manual stories were created by three designers, who
have more than 2 years of VR game and simulation development
experiences and are familiar with level design using Unity3D. The
manual creation mainly included clicking and dragging operations
using the Unity3D game engine to translate and rotate AR contents.
Since fulfilling all possible branches of events in a story manually is
extremely time-consuming, we only asked each designer to choose
one branch for each event, thus a single path was taken on the
story graph for each story. The goal was to place virtual characters
and items as plausibly as possible, while preserving the temporal
consistency, and trying to minimize the overall walking distance of
characters. We denote the manual stories trials as 𝐼𝑚 , 𝐼 𝐼𝑚 and 𝐼 𝐼 𝐼𝑚 .
To allow reasonable comparisons, we ran our approach to sample
along the same selected branches for each manual solution, and thus
produced the corresponding stories 𝐼𝑜 , 𝐼 𝐼𝑜 and 𝐼 𝐼 𝐼𝑜 . Note that for
such a reason, stories were not dynamically assembled at runtime
but precomputed. In total, we formed three comparison conditions
𝐼 , 𝐼 𝐼 and 𝐼 𝐼 𝐼 , each including two story trials.

We recruited 30 participants to experience those stories. All partic-
ipants were undergraduate or graduate students, including 8 females
and 22 males aged 18 through 31. All of them had no experience with
AR before. Each participant was asked to experience one of the three
conditions. Through a pseudorandom procedure, we ensured that
(1) when experiencing one condition, whether the manual story or
the story created by our approach came first was counterbalanced;
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Fig. 14. Some events where the virtual characters’ behaviors adapt to the player’s actions. For each scene, virtual characters’ selections of character slots and
poses change according to the player’s actions as shown. The blue avatar denotes the AR player, whose pose is approximated from the recorded AR headset
trajectory considering specific events.

(2) the occurrences of all conditions were counterbalanced such that
there were 10 records for each condition.

9.2 Procedure
Our user study procedure was approved by the Institutional Review
Boards. One round of study comprised two stages as follows:

Warmup. Before experiencing the preparedAR stories, we showed
demo virtual characters and items near the meeting area in the office
scene, and guided participants to observe the AR content. They
could stay in the warm up session as long as they wanted. We as-
sumed that all participants got familiar with how virtual events
were visualized in AR after this session.

Storytelling. Participants were first informed about their role as
an employee in the office story. In each event, they were told about
what the event was and what they should do (including which
character slot they should choose, since branches in each condition
were pre-selected by designers). Participants were asked to pay
attention to the poses of the virtual characters (especially when
they were in individual activities or group activities) and the items.

After each trial, we asked three questions about how plausible the
AR contents were. The questions related to our costs in the spatial
candidates sampling included: (1) How plausible the characters were
when they carried out activities individually; (2) How plausible the
characters were when they carried out group activities; (3) How
plausible the virtual items were. We used a 5-point Likert scale, with
1 meaning "the least plausible" and 5 meaning "the most plausible".

Table 2. Quantitative results of participants’ ratings on the plausibility of
individual activity (individual ACT.), group activity (group ACT.) and item
placement (item), including the average (avg.), standard deviation (std.) and
𝑝 value. 𝐼𝑜 , 𝐼 𝐼𝑜 and 𝐼 𝐼 𝐼𝑜 were synthesized by our approach. 𝐼𝑚 , 𝐼 𝐼𝑚 and
𝐼 𝐼 𝐼𝑚 were created by designers.

Individual ACT. Group ACT. Item
avg. std. 𝑝 avg. std. 𝑝 avg. std. 𝑝

𝐼𝑚 3.6 0.66 0.51 3.8 0.87 0.80 4.0 0.77 0.61
𝐼𝑜 3.8 0.60 3.9 0.83 4.2 0.87
𝐼 𝐼𝑚 3.7 0.49 0.70 4.1 0.30 0.56 4.1 0.83 0.60
𝐼 𝐼𝑜 3.8 0.60 4.2 0.40 4.3 0.78
𝐼 𝐼 𝐼𝑚 3.5 0.67 0.53 4.0 0.63 0.75 4.3 0.78 0.77
𝐼 𝐼 𝐼𝑜 3.7 0.64 4.1 0.70 4.4 0.66

9.3 Outcome and Analysis
Table 2 summarizes the quantitative results of user ratings on all
trials. We performed a t-test to examine the differences in user
ratings. The 𝑝-values indicate no significant differences in all condi-
tions for the three questions. An interesting observation during the
study was that ratings for group activity plausibility were generally
higher than for individual activity plausibility. According to some
post-study feedback, many participants felt more immersed into the
stories when they participated in group activities as such scenarios
appeared more interactive. The results suggest that our approach
is capable of constraining the poses of both virtual characters and
items, and that it can place virtual contents in real environments as
plausibly as human designers do. We also collected user ratings on
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additional metrics regarding their feelings about the participation
experience. Similarly, no significant differences were found. Refer
to our supplementary material for additional results and analysis.

However, our approach significantly reduces time expenses com-
pared to manual creation by designers. While 𝐼𝑚 , 𝐼 𝐼𝑚 and 𝐼 𝐼 𝐼𝑚 took
the three designers 27, 19, and 22minutes to create, it took about 0.6
seconds to automatically assemble each of the 𝐼𝑜 , 𝐼 𝐼𝑜 and 𝐼 𝐼 𝐼𝑜 . We
do not count the manual time expenses of using our approach here
because manual efforts, including scene preprocessing ( Section 4)
and optimization parameter setting ( Section 6) (if needed), are only
done once for a scene to generate various story assemblies for that
scene. Note that it took less time to sample the stories for this study
compared to dynamic storytelling scenarios, as the sampler only
explored alongside the selected branches by the designers. This
further suggests that while our approach can easily handle dynamic
and interactive AR storytelling, having designers manually create
all possible story event scenarios is impractical.

10 DISCUSSION AND FUTURE WORK
We present a novel approach to deliver AR stories with multiple vir-
tual characters and items in diverse indoor scenes considering scene
semantics. Our hierarchical story sampling formulation supports
efficient interactive storytelling, enabling an AR player to partic-
ipate as one of the characters in a story. Through an user study,
we validated that our approach can produce stories that are simi-
larly plausible as human-designed AR stories while considerably
reducing the labor work of designers.
In our work, we only use an AR headset for visualizing AR con-

tents. We are interested in incorporating more hardware for en-
hancing AR storytelling experiences. Using only an AR headset for
localizing the AR player is unstable especially when the player is
moving around; and introduces misalignment between the AR con-
tents and the physical environments, which is noticeable in some of
our screenshots and videos. Using additional sensors and trackers
to track body joints could not only improve the localization pre-
cision, but also provide higher-quality trajectories replay. Besides,
accessories like haptic gloves could enhance the players’ interaction
with the virtual items, allowing them to sense the force feedback of
grasping, pushing, pressing, etc., hence making the interactive AR
experiences more interactive, realistic, and immersive.
Due to the limited 3D scan quality and 3D instance segmenta-

tion performance, our semi-automatic scene semantics extraction
step still requires some manual refinement. In the future, if more
powerful instance segmentation, 3D reconstruction and scene under-
standing methods become available, we can reduce the labor work
or even make the whole story authoring process fully automatic.
The item alignment is evaluated by two cases referring to the

shape of the supporting surface. In future work, it will be interest-
ing to introduce scene geometry analysis to facilitate virtual item
placement, akin to how 3D edges and planar surfaces are utilized
for object placements in SnapToReality [Nuernberger et al. 2016].
Currently, our approach only supports fixed story plots. We are

interested in integrating automatic story authoring into our method.
For example, higher-level story descriptions in natural languages
might be automatically converted into alternative story narratives,

so as to grant the players more freedom to take desired actions
rather than strictly following the fixed plots, and to further drive
the whole story with dynamic events.
Our approach supports player interactions including choosing

character slots and interacting with virtual items. In future work,
we may include additional types of interactions, especially direct
interactions between players and virtual characters, to make the AR
storytelling experience more realistic and immersive. For example,
it will be compelling to enable players to pass virtual items directly
to virtual characters, and vice versa.
We employed an optimization method, which could flexibly in-

corporate additional considerations as extensions. However, some
results synthesized by the optimization might slightly deviate from
ideal arrangements. For example, in a group activity where a player
talks to a character, the character may not directly face the player
though it keeps the player within its peripheral vision as constrained
by our cost function. We believe that learning-based approaches
could capture some subtle characteristics not modeled by hand-
crafted heuristics. A possible extension is to leverage some 3D hu-
man motion synthesis techniques [Cao et al. 2020; Hassan et al.
2021a; Wang et al. 2021a,b] to adapt characters’ behaviours to spe-
cific scene geometries and semantics.

Another limitation of our animator is that it simply waits if some
characters have finished their animations but some have not. Future
work may include asynchronous animations for different characters
tomake thewhole storytelling process smoother andmore natural. It
will also be interesting to accommodate more characters. A possible
solution is to apply our approach to sub-groups of characters. Finally,
our approach may inspire exciting future efforts to develop multi-
player, interactive AR storytelling experiences.

In our user study, we asked participants to rate a condition after
experiencing the whole trial. While this ensured the coherence of
storytelling regarding temporal relations, an alternative setting is to
let participants rate immediately after each event, thus they have the
best memory of that event when rating considering spatial relations.
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