
Learning Virtual Grasp with Failed Demonstrations
via Bayesian Inverse Reinforcement Learning

Xu Xie?,1,2 Changyang Li?,1 Chi Zhang1,2 Yixin Zhu1,2 Song-Chun Zhu1,2

Abstract— We propose Bayesian Inverse Reinforcement
Learning with Failure (BIRLF), which makes use of failed
demonstrations that were often ignored or filtered in previous
methods due to the difficulties to incorporate them in addition
to the successful ones. Specifically, we leverage halfspaces
derived from policy optimality conditions to incorporate failed
demonstrations under Bayesian Inverse Reinforcement Learn-
ing (BIRL) framework. Under the continuous control setting,
the reward function and policy are learned in an alternative
manner, both of which are estimated by function approximators
to guarantee the learning ability. Our approach is formulated
as a model-free Inverse Reinforcement Learning (IRL) method
that naturally accommodates more complex environments with
continuous state and action spaces. In experiments, we demon-
strate the proposed method in a virtual grasping task, achieving
a significant performance boost compared to existing methods.

I. INTRODUCTION

Inverse Reinforcement Learning (IRL) [1] seeks to find the
true reward function in a modified Markov Decision Process
(MDP) [2] where the expert demonstrations are provided in
place of a reward function. Intuitively, the task could be
interpreted as learning a reward function that best explains
a set of observed expert demonstrations. Nevertheless, no
matter how a specific IRL problem is previously formulated,
one key assumption prevails: the observed experts always
execute (nearly) optimal actions induced from the underlying
true reward function. Unfortunately, this strong assumption
poses a strict constraint on the data collection stage: only
successful demonstrations are recorded, and all failure cases
are discarded. This hard constraint makes it extremely costly
to collect demonstrations, particularly with a physical robot.

We argue, however, this strict requirement for IRL is un-
necessary, not only because the failure cases are more readily
available than the successful ones, but also because human
beings are capable of learning with failure cases. Another
aspect that we cannot ignore is that failed demonstrations, in
terms of trajectory points made by experts, highly resemble
successful ones; they usually differ only at a few critical
points. Specifically, in the case of robot learning from
object grasping demonstrations, the failed demonstrations are
oftentimes distinctive from the successful ones in the very
few last steps where the failed trajectories result in contact
points that are slightly off stable grasps. In our observations,
failed demonstrations are not made to be failed intentionally

? X. Xie, C. Li contributed equally to this work.
1 UCLA Center for Vision, Cognition, Learning, and

Autonomy. Emails: {xiexu, changyangli, chi.zhang,
yixin.zhu}@ucla.edu, sczhu@stat.ucla.edu.

2 International Center for AI and Robot Autonomy (CARA)

…

Successful Demonstrations

Failed Demonstrations

BIRLF

Motion Planning
Grasping Trajectories

First
Person
View

…

Fig. 1: Human demonstrators perform a complex grasping task that
may include failed demonstrations in the virtual environment. The
proposed BIRLF is able to infer the reward function from such a
mix of both successful and failed demonstrations. The robot then
learns the policy to achieve the demonstrated task, reproducing the
grasping trajectories with a motion planner.

by the expert; both failed and successful demonstrations are
initially pursuing the same trajectory distributions for one
task. Motivated by such an observation, we propose an IRL
method to incorporate failed demonstrations which could be
informative to help with task learning.

Though Inverse Reinforcement Learning with Failure
(IRLF) is not totally unprecedented, our proposed approach
addresses several less-explored problems in IRLF. First,
our approach naturally extends previous discrete state and
action spaces [3] by accommodating a complex environ-
ment with continuous state and action spaces. Second, the
proposed method automatically learns the feature function
and composes the reward function by weights sampled
from an Markov Chain Monte Carlo (MCMC) process,
in contrast to previous [4] method using a set of hand-
coded feature functions. Specifically, our method alternates
between a weight sampling step by an MCMC sampler and
a feature function learning step by policy iteration. Such a
design allows us to leverage powerful function approximators
to better estimate the true reward function. Third, as we
will show in Section IV, from a Bayesian perspective, the
proposed work could be interpreted as BIRLF with convex
halfspace constraints, which, to the best of our knowledge,
is the first attempt to cast IRLF in a Bayesian framework.

To evaluate the effectiveness of our approach, we develop
a virtual environment where an autonomous agent is tasked
to grasp various objects in a distance. By using this virtual
environment, safe and successful expert demonstrations can
be easily teleoperated and saved for training [5], [6]; see
Figure 1 for the basic setup of the task. In each trial, the
demonstrator was asked to control the virtual agent in a
grasping task using Virtual Reality (VR) devices. Here, hu-
man subjects try to move the end-effector and configure the
hand pose to a state that would most likely result in a stable
grasp. The actual evaluation is done by a physics engine.
In such a setting, both successful and failed trials could be
automatically labeled and stored during demonstrations, thus
greatly reducing efforts in the data collection process.

II. RELATED WORK

Learning with Failed Demonstrations: In a typical
setup of Learning from Demonstration (LfD) [7], only the
expert demonstrations are given to improve the performance
on robot manipulation tasks. Some works propose data
efficient approaches [8], [9] to learn from less number of
successful demonstrations, while failed demonstrations are
widely regarded as noise [10], [11], [12], [13], [14], [15].
However, failed demonstrations should be leveraged as well
since: (i) it is both time-consuming and demanding to collect
only successful demonstrations, especially for complex tasks,
and (ii) failed demonstrations also contain useful information
which, when properly used, should improve performance.

Carefully designed algorithms using failed demonstra-
tions have already shown notable performance improvement.
Shiarlis et al. [4] introduce an early work on IRLF, where a
new constraint is proposed in the maximum causal entropy
framework [16] to encourage the learned policy to exhibit
a different distribution from failed demonstrations, resulting
in better convergence than its counterparts with successful
demonstrations only. Lee et al. [3], [17] leveraged Gaussian
process, in which a proficiency term is applied to generate
both successful and failed demonstrations; this work show-
cases the potential effectiveness of adopting failed demon-
strations in GridWorld. Learning from non-optimal demon-
strations is also adopted by the Reinforcement Learning (RL)
community; Gao et al. [18] learns an initial policy from
both optimal and suboptimal demonstrations. However, these
IRLF methods either rely on explicit feature representation
or focus only on a low-dimensional state or action space, all
of which are hardly effective in more complex IRLF tasks,
such as the robot grasping one considered in this work.

Inverse Reinforcement Learning: Only expert demon-
strations are usually provided in IRL [1], [19] to learn
the unknown reward function in an MDP [2]. Existing
methods could be divided into model-based and model-free
methods [20], [21]; dynamics of a system are provided to the
agent in model-based methods but not in model-free IRL. In
this paper, we focus on model-free IRL.

Early works only require matched feature expectation
between demonstrations and policies [22]. However, such a
formulation is ill-posed; multiple, even an infinite number of,
policies could produce the very same expectation, making
the solution not unique. To find an optimal policy, Ratliff

et al. [23] propose maximum margin planning to maximize
the difference between other policies and the optimal one.
BIRL [24] derives a posterior probability over the reward
function space by combining prior knowledge and evidence
from the experts’ actions and demonstrates a significant im-
provement over heuristics-based methods. Later approaches
apply the maximum entropy principle to find a distribution
that matches the feature expectation [25]. As for variations
of reward function’s form, instead of modeling the reward
function as a linear combination of features [22], Levine et
al. [26] and Jin et al. [27] considers a nonlinear formulation
using Gaussian processes; it determines the relevance of each
feature with respect to the expert policy at the same time.
Unfortunately, these methods consider only successful trials,
leaving out many valuable resources during demonstrations,
i.e., failure cases accumulated at the data collection stage.

Robot Grasping: A robot grasp is defined as a task
in which a target object is gripped by the fingers of a
robot’s end-effectors [28]. In general, grasp methods can be
divided into two categories: analytical methods and empirical
methods; see a recent review by Sahbani et al. [29]. Re-
cently, there is an increasing interest in empirical methods to
overcome the computational complexity posed by analytical
methods. The majority of the recent works leverage deep
RL for control policy learning [30], [31]. In our work, we
propose a modified IRL method for robot grasping, with a
reward function learned from human demonstrations.

III. BACKGROUND AND NOTATIONS

A. Markov Decision Process
The learning environment is characterized by an MDP

defined by a tuple M= {S,A, T, γ, r}, where S denotes
the state space, A the action space, T (s′|s, a) the transition
probability from state s to s′ by taking action a, γ the
discount factor, and r the reward function. For LfD via IRL,
the MDP tuple becomes M\r, but with trajectories D=
{d1, . . . , dN} from expert demonstrations. Each trajectory
di is expressed as a sequence of state-action pairs.

B. Value Function of a Policy
A policy is defined as a mapping function from state space

to action space: π :S 7→A. For a given policy π, the state
value function V π(s) is defined as the expected accumulative
reward when an agent starts from state s and executes π
thereafter. Formally, the value function is expressed as:

V π(s) =Ea∼π

[∞∑
t=0

γtr(st)|s0 = s

]
. (1)

A state-action value function Q could be similarly defined
for each state-action pair (s, a):

Qπ(s, a) = r(s)+γEs′∼T (·|s,a)[V
π(s′)]. (2)

Assuming optimality of the policy π(s) under the reward
function r(s), the following inequalities should hold for all
states and actions [19]:

Es′∼T (·|s,π(s))[V
π(s′)]≥Es′∼T (·|s,a)[V

π(s′)]

Qπ(s, π(s))≥Qπ(s, a)

∀a∈A, s∈S.
(3)

C. Bayesian Inverse Reinforcement Learning and PolicyWalk

BIRL [24] leverages probability distribution to represent
the uncertainty in reward functions. Specifically, an agent
(expert) A performs the task and generates a trajectory d=
{(s0, a0), (s1, a1), ..., (sT , aT)}. Assuming A maximizes the
accumulative reward and accomplishes the task using a
stationary policy, the posterior probability of reward function
r under Bayes theorem can be formulated as:

P (r|d) =
P (d|r)P (r)

P (d)
=

1

Z
exp(αΣtQ(st, at; r))P (r), (4)

where Z is the normalizing constant, α the degree of confi-
dence, and Q(st, at; r) the state-action value function under
the reward function r. However, estimating such a posterior
is difficult in practice. To resolve this issue, PolicyWalk [24]
was proposed as an efficient sampling procedure. When
fixing the current reward function r, the sampler optimizes
on-policy π to update Q function estimation. In the MCMC
stage, the sampler samples r̃ from the neighborhood of the
current r. After moving to the chain of r̃, the new optimal
policy only requires several steps of policy iterations from
the previous one. Ramachandran et al. [24] prove the rapid
mixing property of the Markov chain with a uniform reward
prior, providing a theoretical treatment of the convergence.

IV. BAYESIAN INVERSE REINFORCEMENT LEARNING
WITH FAILURE

In this section, we detail the proposed method for learning
with failed demonstrations. Our approach is formulated in
a Bayesian framework by incorporating the value function
inequalities in Equation 3, which implicitly define a valid
convex set composed of halfspaces. In the following, we
use D and F to denote the set of successful and failed
demonstrations, respectively.

A. Problem Formulation

Starting from Equation 4, the posterior probability of the
reward function r under the full demonstration set Ψ =D∪F
could be expressed as:

P (r|Ψ)∝P (Ψ|r)P (r). (5)

To sample a reward function from the posterior, we use an
MCMC chain so that the final reward function would not
only match the statistics of trajectories in D but also capture
the difference between D and F . With such an intuition, we
decompose the likelihood from Equation 5 into:

P (Ψ|r)∝ exp(αΣd∈Ψ,tQ(sd,t, ad,t; r)+β∆U(D,F ; r)), (6)

where the first term follows Equation 4, ∆U(D,F ; r) in the
second term measures the potential difference between D
and F , and β is a coefficient.

B. Halfspace-Induced Potential

To characterize ∆U(D,F ; r) on different trajectory sets,
we utilize Equation 3 and quantitatively compute this po-
tential term among different solution spaces. Assume we
parameterize the reward function r(s) as r(s) =ωTφ(s),

Fig. 2: Intersections of halfspaces (dashed area) with normal vectors
(red and blue arrows) at boundaries for (a) successful demonstra-
tions HD and (b) failed demonstrations HF . (c) Measuring the
potential difference among two demonstration sets.

where ω is the feature weights and φ(s) compactly represents
the state features, the Q function could be reformulated as

Q(s, a; r) =E

[∞∑
t=0

γtωTφ(st)|s0 = s, a0 = a

]
=ωTµ(s, a), (7)

where µ(s, a) =E[Σ∞t=0γ
tφ(st)|s0 = s, a0 = a] is the feature

expectation function. Substituting the Q function into Equa-
tion 3, we derive the following inequity:

ωT (µ(s, π(s))−µ(s, a))≥ 0,∀s∈S, a∈A. (8)

Solving ω in Equation 8 would give us an intersection of
halfspaces. Following this observation, we define HD as

HD : {ω|ωT (µ(st, at)−µ(st, a
′))≥ 0,∀st, at ∈D, a′ ∈A}, (9)

and HDπ on the current policy as

HDπ : {ω|ωT (µ(st, π(st))−µ(st, a
′))≥ 0,∀st ∈D, a′ ∈A}. (10)

Definitions of HF and HFπ follow in the same way.
We further note that each space defined above has a

corresponding set of normal vectors with respect to its
boundaries, denoted as N . As an example, the normal vector
set of HDπ is computed as

NHDπ =

{
µ(st, π(st))−µ(st, a

′)

||µ(st, π(st))−µ(st, a′)||2
,∀st, at ∈D, a′ ∈A

}
. (11)

Normal vector sets of NHD , NHF , and NHFπ are similarly
obtained; see Figure 2 for a graphical illustration.

The potential term ∆U(D,F ; r) thereby is defined as:

∆U(D,F ; r) = sim(NHD , NHDπ)−sim(NHF , NHFπ), (12)

where NHD , NHF , NHDπ , and NHFπ are normal vector sets.
The sim(·, ·) function over two sets could be generalized
from one over two normal vectors. For example, if we define
the vector similarity function as

sim(n1, n2) = (1+cos(n1, n2))/2, (13)

the similarity over two sets can be computed by the following
steps: (i) Get the most similar vector pair selected from
two sets, respectively. (ii) Compute the similarity score and
remove them from their own sets. (iii) Continue searching
for the next vector pair, following step (i) and (ii), until one
set is empty. (iv) The average of all similarity scores we
obtain is treated as the similarity of two sets.

Algorithm 1: BIRLF algorithm
1: Collect demonstrations (e.g., trajectory sets for

grasping) D and F
2: Initialize network parameters θ
3: Randomly initialize ω as an unit vector ||ω||2 = 1
4: φ(s), µ(s, a), π(a|s) := PolicyIteration(θ, ω)
5: while not done do
6: Randomly sample ω̃ from the neighborhood of ω
7: Compute Q̃Dπ (st, π(st)),∀st, at ∈D by Equation 7
8: Compute Q̃D(st, at),∀st, at ∈D by Equation 7
9: if ∃st, at ∈D, Q̃Dπ (st, at)<Q̃D(st, at) then

10: φ̃(s), µ̃(s, a), ˜π(a|s) := PolicyIteration(θ, ω̃)
11: Compute potential ∆U(D,F ; r)

12: With probability min{1, P (r̃|Ψ)
P (r|Ψ)}, ω := ω̃, π := π̃

13: else
14: With probability min{1, P (r̃|Ψ)

P (r|Ψ)}, ω := ω̃
15: end if
16: end while
17: Output θ and ω

C. Algorithm

Under the proposed framework, we can leverage Equa-
tion 5 for MCMC sampling on the reward function using
the PolicyWalk algorithm. This process is equivalent to
sampling feature weights ω given a fixed φ(s). For feature
function φ(s) and feature expectation function µ(s, a), we
use function approximators to estimate their true values.
Concretely, we instantiate both φ(s) and µ(s, a) as deep
neural networks and learn them using Deep Deterministic
Policy Gradient (DDPG) [32]. As shown in Figure 3, the
network architecture is composed of four modules. φ(·) takes
state s as input and outputs the state feature. Actor module
A(·) outputs an action distribution from φ(s). Different from
the original DDPG, our network also outputs a vector as
feature expectation µ(s, a), computed by a critic module C(·)
that aggregates the action output from A(·) and contextual
features derived from a mapping module M(·). The value
function Q(s, a) is then derived by an inner product of ω
and µ(s, a). For fixed feature weights ω, network weights
in each module are updated by policy gradient. Since ω is
sampled from a Markov chain, the process of feature weight
learning can be regarded as policy iteration. Note that the
policy of the agent (A(φ(s))) is updated in the meantime.
We summarize our BIRLF algorithm in Algorithm 1.

D. Alternative

In practice, Equation 6 has a problem during the learning
phase: at the early stage of training, ∆U(D,F ; r) would
fluctuate around zero due to the limited amount of data,
leading to a biased posterior. To resolve this issue, we
propose to incorporate an additional term to stabilize the
posterior by ensuring the sum is above zero, i.e.,

P (Ψ|r)∝ exp (Σd∈Ψ,tQ(sd,t, ad,t; r)+β1∆U(D,F ; r)+β2|∆U(D,F ; r)|), (14)

where we append Equation 6 with the absolute potential
|∆U(D,F ; r)|. In our experiment described later in Sec-
tion V, we initialize β2≥β1 and apply simulated annealing

Fig. 3: The network architecture for the proposed BIRLF algorithm.
φ(·) is the state feature module, M(·) the mapping module, A(·)
the actor module, and C(·) the critic module.

such that β2 gradually approaches β1. In the worst situa-
tion, when MCMC chain incorrectly fits F rather than D
(∆U(D,F ; r)< 0), the last two terms in Equation 14 will
cancel each other (β1 =β2) and result in a posterior form
exactly the same as BIRL in Equation 4. This alternative
guarantees the performance of our method by incorporating
the original BIRL sampling scheme as the baseline.

V. EXPERIMENTS

A. Platform Setup
To properly measure the performance of different algo-

rithms, a virtual environment with robot simulation [5], [33]
is built for evaluation; see Figure 1. The virtual environment
is built using Unreal Engine 4 (UE4) for its high rendering
quality and real-time physics-based simulation. Behavior
control of the virtual Baxter is implemented in the Robot
Operating System (ROS), and the messages between UE4
and ROS are communicated on a customized UE4/ROS
bridge using TCP/IP. Teleoperation is achieved using a set
of Oculus Rift VR controllers.

The virtual scene for the grasping task includes a virtual
Baxter and a target object to be grasped on top of a desk.
The Baxter is initialized with the default untucked pose, and
the object is initially placed at the center of the desk. The
virtual grippers of the Baxter robot can be teleoperated to
move around within a prescribed range of space, as long as
the constraints of Baxter’s joint limits are satisfied.

B. Task Design
In this virtual grasping task, the goal is to generate a stable

grasp trajectory of a given object. Human demonstrators are
put inside the virtual robot’s embodiment with the robot’s
own joint limits and flexibility. Such a setup is designed to
ease the transfer between different embodiments [34], but
often leads to more failed human demonstrations.

C. Data Collection
Participants were first tasked with a training phase to be

familiarized with the virtual world and the teleoperation.
Using a pair of Oculus Rift controllers, participants were
asked to control the gripper of the virtual Baxter robot from
the robots’ first-person view. During the data collection, the
physics engine automatically evaluates whether a grasping
attempt was successful. All grasping trajectories, including
both the successful and failed ones, were recorded on-the-fly.
In total, 120 demonstrations were collected for two types of
objects: cuboids (87 successful and 33 failed) and mugs (76
successful and 44 failed); see examples in Figure 4.

Fig. 4: 1st column: target objects: a cuboid and a mug. 2nd column:
visualization of the set SG (in red dots) and the set SD\G (in gray
dots); see text for details. 3rd column: failure cases. 4th column:
success cases. Blue trajectories gain less rewards than the red ones.

D. Training

In the training stage, the virtual Baxter is spawned in the
same location in the virtual scene as in the data collection
phase. An additional IRL module is inserted between the
virtual environment in UE4 and the motion planner in ROS
(see Figure 1) to guide robot grasping autonomously.

The state space of the environment is {sw, st1 , st2}=
{(xw, yw, zw), (xt1 , yt1 , zt1), (xt2 , yt2 , zt2)}, a 9-D vector
with w, t1 and t2 representing gripper wrist, left tip end,
and right tip end, respectively. We parameterize the action
space using a 4-D vector (ax, ay, az, at)∈ [−1.0, 1.0]4: the
first three fields are the normalized movement along each
axis of the 3D Cartesian plane, and the last field at is the
1-D movement of two finger tips of the gripper.

Within one training episode, the robot sends its state s
as a “state” message to the IRL module (UE4 to IRL). By
estimating the reward value as well as the current policy,
the IRL agent generates an action a and sends it as an
“action” message (IRL to ROS). After the “action” message
is received, the virtual robot gripper executes the action
through motion planning and updates the state to s′ (ROS to
UE4). This process repeats itself until termination.

One episode will terminate when one of the following four
scenarios happens: (i) a successful grasp, (ii) the target object
falls down, (iii) any part of the robot touches things other
than the target object, or (iv) the length of the action sequence
exceeds the maximum number allowed (100 steps). A grasp
validation routine will be called to determine whether the
grasp is successful.

E. Experimental Results

We now detail virtual grasping experiments using both
cuboids and mugs. Experiments on more objects can be
found in the supplementary video. We define the ground
truth reward function r(s) in the virtual environment to fairly
compare different IRL methods

r(s) =


0.02, s∈ΩG

0.01, s∈ΩD\G

−0.01, otherwise,
(15)

where ΩG represents the convex hull formed by the success
frames in the demonstrations, i.e., the set SG of {si,Ti :
∀(si,Ti , ai,Ti)∈D} (red dots in Figure 4), and ΩD\G the
convex hull of the set SD\G of {si,j :∀(si,j , ai,j)∈D,∀j 6=
Ti} (gray dots in Figure 4). This design of the ground

�� ��� ��� ��� ��� ��� ��� ���

#�%"��%

�

��

��

��

	�

���

(
�$
��
��
��
��
'�
��
���
�$
�!
��

 �&�"�%
������

�����
����
��)
!&
�����
�����

(a) Cubiods

�� ��� ��� ��� ��� ��� ��� ���

#�%"��%

��

��

��

	�

���

���

���

���

(
�$
��
��
��
��
'�
��
���
�$
�!
��

 �&�"�%
������

�����
����
��)
!&
�����
�����

(b) Mugs
Fig. 5: Averaged value difference (AVD) for different IRL methods.

truth reward function will incur higher rewards for the red
trajectories in Figure 4 and lower ones for blue segments.

We evaluate the proposed IRLF algorithm by comparing
against the following state-of-the-art IRL methods:
• BIRL [24]. Bayesian-IRL handles the uncertainty of

reward estimation using a probability distribution. See
Section III and [24] for details.

• MaxEntIRL [25]. Maximum Entropy-IRL is also a
probabilistic approach to reason about uncertainty in re-
ward function, providing a well-defined, globally normal-
ized distribution over decision sequences by matching fea-
ture expectation. We implement it by empirically estimat-
ing state visitation frequencies from sampled trajectories.

• SSIRL [35]. Semi-supervised-IRL relaxes the conditions
of IRL by not requiring all the demonstrations to be
generated by an expert, i.e., failure cases are allowed.
This method is inspired by semi-supervised SVM [36],
and treats feature expectations as the labels and optimizes
the objective using a minimax scheme. We implement the
feature expectations by leveraging sample trajectories.

• GPIRL [26]. Gaussian Process IRL learns the reward
as a nonlinear function. This function is approximated
through Gaussian process, and its structure is determined
by the kernel function. We empirically estimate state and
action visitation frequencies from sampled trajectories in
our implementation.
We denote the proposed IRLF method using Equation 6

as BIRLF and the one using Equation 14 as BIRLF-A. For
BIRLF, we set α= 1.0, β= 102. For BIRLF-A, we set α=
1.0, β1 = 102, and β2 = 103, and applied annealing every 50
episodes to linearly decrease β2 from 103 to 102.

We adopt the following two metrics to measure the per-
formance of the methods:
• Average Value Difference (AVD). This metric repre-

sents the difference of the average returns between suc-
cessful demonstrations by human participants and the ones
generated by an IRL algorithm.

• Mean Squared Error (MSE). We compute the MSE
of relative reward difference, calculated between each
time frame of trajectories from the successful human
demonstrations and the ones generated by an IRL agent.
Figure 5 compares the results of the proposed method

BIRLF with other baselines. For methods that take failed
demonstrations into account (BIRLF and SSIRL), we create
a shared demonstration set with |D|= 2|F |. For methods
that only assume expert demonstrations (BIRL, MaxEntIRL,
and GPIRL), we create demonstration sets consisting only of

TABLE I: Quantitative evaluation (MSE) of different IRL methods
on grasping cuboids and mugs. The performance is measured across
different ratio configurations |D| : |F |.

Methods
|D| : |F |

1 : 1 2 : 1 4 : 1
Cuboid Mug Cuboid Mug Cuboid Mug

BIRLF-A 0.90% 3.95% 0.72% 2.44% 0.84% 2.53%
BIRLF 1.30% 5.88% 0.78% 3.12% 0.82% 3.93%
BIRL 8.00% 9.67% 7.15% 8.42% 7.20% 9.09%
SSIRL 2.17% 5.98% 1.15% 5.19% 1.18% 5.26%

MaxEntIRL 4.33% 6.10% 3.99% 5.77% 4.13% 6.04%
GPIRL 4.81% 7.20% 3.65% 6.29% 3.79% 6.84%

successful demonstrations. For fair comparisons, we keep the
sizes of demonstration sets the same for different methods.
As shown in Figure 5, our proposed methods (BIRLF and
BIRLF-A) converge after 400 training episodes and achieve
the minimum AVD.

We show the MSE of different methods on both cuboids
and mugs in Table I. The performance of different meth-
ods was evaluated after 600 episodes of training when all
methods had reached convergence. We follow a common
practice to present the performance of our method under
different size ratios between the successful demonstration
set and the failed demonstration set |D| : |F |, while keeping
the size of the full demonstration set Ψ fixed. Note that for
BIRL and MaxEntIRL, methods that only handle successful
demonstrations, only D is provided for training.

As shown in the tables, the proposed approaches, BIRLF
and BIRLF-A, generally achieve the lowest MSE compared
to others. We also notice BIRLF-A performs better than
BIRLF in general; the only exception occurs when the
algorithm learns to grasp the mug with |D| : |F |= 4 : 1.

VI. CONCLUSION

In this paper, we propose Bayesian IRLF that incorporates
both successful and failed demonstrations for continuous
state/action space. Halfspaces from policy optimality are
leveraged to model the failed demonstrations set. In a com-
plex virtual grasping task, our method achieves state-of-the-
art performance compared to four existing methods.

Acknowledgement: The authors thank Prof. Ying Nian Wu,
Feng Gao, Mark Edmonds from UCLA for useful discussions.
The work reported herein was supported by DARPA XAI grant
N66001-17-2-4029, ONR MURI grant N00014-16-1-2007, ARO
grant W911NF-18-1-0296, and an NVIDIA GPU donation grant.

REFERENCES

[1] S. Russell, “Learning agents for uncertain environments,” in ICML,
1998.

[2] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[3] K. Lee, S. Choi, and S. Oh, “Inverse reinforcement learning with
leveraged gaussian processes,” in IROS, 2016.

[4] K. Shiarlis, J. Messias, and S. Whiteson, “Inverse reinforcement
learning from failure,” in AAMAS, 2016.

[5] X. Xie, H. Liu, Z. Zhang, Y. Qiu, F. Gao, S. Qi, Y. Zhu, and S.-C.
Zhu, “Vrgym: A virtual testbed for physical and interactive ai,” arXiv
preprint arXiv:1904.01698, 2019.

[6] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel,
“Deep imitation learning for complex manipulation tasks from virtual
reality teleoperation,” arXiv preprint arXiv:1710.04615, 2017.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[8] P. Englert and M. Toussaint, “Combined optimization and reinforce-
ment learning for manipulation skills.,” in RSS, 2016.

[9] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades,
and J.-B. Mouret, “Black-box data-efficient policy search for robotics,”
in IROS, 2017.

[10] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in ICML, 2008.

[11] D. Silver, J. Bagnell, and A. Stentz, “High performance outdoor
navigation from overhead data using imitation learning,” RSS, 2008.

[12] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for
helicopter control,” Communications of the ACM, vol. 52, no. 7,
pp. 97–105, 2009.

[13] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search:
Functional gradient techniques for imitation learning,” Autonomous
Robots, vol. 27, no. 1, pp. 25–53, 2009.

[14] F. S. Melo, M. Lopes, and R. Ferreira, “Analysis of inverse reinforce-
ment learning with perturbed demonstrations.,” in ECAI, 2010.

[15] J. Zheng, S. Liu, and L. M. Ni, “Robust bayesian inverse reinforcement
learning with sparse behavior noise.,” in AAAI, 2014.

[16] B. D. Ziebart, Modeling purposeful adaptive behavior with the prin-
ciple of maximum causal entropy. PhD thesis, CMU, 2010.

[17] S. Choi, K. Lee, and S. Oh, “Robust learning from demonstration using
leveraged gaussian processes and sparse-constrained optimization,” in
ICRA, 2016.

[18] Y. Gao, J. Lin, F. Yu, S. Levine, T. Darrell, et al., “Rein-
forcement learning from imperfect demonstrations,” arXiv preprint
arXiv:1802.05313, 2018.

[19] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.,” in ICML, 2000.

[20] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters,
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends R© in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[21] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” arXiv preprint arXiv:1806.06877,
2018.

[22] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML, 2004.

[23] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in ICML, 2006.

[24] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning,” Urbana, vol. 51, no. 61801, pp. 1–4, 2007.

[25] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.,” in AAAI, 2008.

[26] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with gaussian processes,” in NIPS, 2011.

[27] M. Jin, A. Damianou, P. Abbeel, and C. Spanos, “Inverse re-
inforcement learning via deep gaussian process,” arXiv preprint
arXiv:1512.08065, 2015.

[28] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,” IJRR,
vol. 15, no. 3, pp. 230–266, 1996.

[29] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, 2012.

[30] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv preprint arXiv:1511.03791, 2015.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[32] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in ICML, 2016.

[33] H. Liu, Z. Zhang, X. Xie, Y. Zhu, Y. Liu, Y. Wang, and S.-C. Zhu,
“High-fidelity grasping in virtual reality using a glove-based system,”
in ICRA, 2019.

[34] H. Liu, C. Zhang, Y. Zhu, C. Jiang, and S.-C. Zhu, “Mirroring without
overimitation: Learning functionally equivalent manipulation actions,”
in AAAI, 2019.

[35] M. Valko, M. Ghavamzadeh, and A. Lazaric, “Semi-supervised
apprenticeship learning,” in European Workshop on Reinforcement
Learning, 2013.

[36] K. P. Bennett and A. Demiriz, “Semi-supervised support vector
machines,” in NIPS, 1999.

	Introduction
	Related Work
	Background and Notations
	Markov Decision Process
	Value Function of a Policy
	Bayesian Inverse Reinforcement Learning and PolicyWalk

	Bayesian Inverse Reinforcement Learning with Failure
	Problem Formulation
	Halfspace-Induced Potential
	Algorithm
	Alternative

	Experiments
	Platform Setup
	Task Design
	Data Collection
	Training
	Experimental Results

	Conclusion
	References

